Walking through

In this tutorial, we will see practical examples of using unsupervised machine learning methods to automate pattern discovery and get chemical insight from data generated by nonadiabatic molecular dynamics (NAMD) simulations. The NAMD data obtained within the surface hopping approximation is composed of an ensemble of trajectories that can be viewed as multivariate time series objects, where each point in time corresponds to a molecular geometry with its associated quantum properties. Thus, owing to the high dimensionality of the NAMD data, it can be cumbersome to identify the key internal coordinates of the molecule driving the excited-state dynamics by “manual” inspection of the data. This is the scenario where unsupervised learning comes to the rescue. The main idea is to use algorithms designed to find natural grouping structures within the data - clustering analysis - or find a compact data representation - dimension reduction - based on a given similarity measure between data instances.

To automate the unsupervised learning analysis in the context of nonadiabatic dynamics, we have developed a Python package called ULaMDyn, which provides a complete pipeline for analyzing NAMD trajectories data generated by the Newton-X program. This pipeline starts with collecting data from the Newton-X outputs, going through molecular representations, dimension reduction, and clustering analysis. Although ULaMDyn provides a friendly-user command-line interface to perform the whole data analysis in a single shot, in this tutorial, we will unfold the pipeline step-by-step to get a better understanding and more flexibility in the data analysis process.

Installation of required packages

Instruction: If you are running this notebook in Google colab, please restart the execution environment after the packages’ installation given by the bash commands below. This is necessary to avoid error when instantiating the classes of ulamdyn.

[1]:
%%bash

git clone https://gitlab.com/maxjr82/ulamdyn.git
Cloning into 'ulamdyn'...
[2]:
%%bash

cd ulamdyn
pip install  ./
Processing /content/ulamdyn
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Collecting h5py==3.11.0 (from ulamdyn==1.1.1)
  Downloading h5py-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.5 kB)
Requirement already satisfied: joblib==1.4.2 in /usr/local/lib/python3.10/dist-packages (from ulamdyn==1.1.1) (1.4.2)
Collecting numpy==1.26.2 (from ulamdyn==1.1.1)
  Downloading numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.2/61.2 kB 3.4 MB/s eta 0:00:00
Collecting scipy==1.14.1 (from ulamdyn==1.1.1)
  Downloading scipy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (60 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 60.8/60.8 kB 3.7 MB/s eta 0:00:00
Requirement already satisfied: pandas==2.2.2 in /usr/local/lib/python3.10/dist-packages (from ulamdyn==1.1.1) (2.2.2)
Collecting pytz==2024.1 (from ulamdyn==1.1.1)
  Downloading pytz-2024.1-py2.py3-none-any.whl.metadata (22 kB)
Collecting rmsd==1.5.1 (from ulamdyn==1.1.1)
  Downloading rmsd-1.5.1-py3-none-any.whl.metadata (5.3 kB)
Collecting tslearn==0.6.3 (from ulamdyn==1.1.1)
  Downloading tslearn-0.6.3-py3-none-any.whl.metadata (14 kB)
Collecting scikit-learn==1.5.1 (from ulamdyn==1.1.1)
  Downloading scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)
Collecting black==24.8.0 (from ulamdyn==1.1.1)
  Downloading black-24.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl.metadata (78 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 78.2/78.2 kB 6.7 MB/s eta 0:00:00
Collecting setuptools==73.0.1 (from ulamdyn==1.1.1)
  Downloading setuptools-73.0.1-py3-none-any.whl.metadata (6.6 kB)
Collecting dscribe==2.1.1 (from ulamdyn==1.1.1)
  Downloading dscribe-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (18 kB)
Collecting ase==3.23.0 (from ulamdyn==1.1.1)
  Downloading ase-3.23.0-py3-none-any.whl.metadata (3.8 kB)
Collecting tqdm==4.66.5 (from ulamdyn==1.1.1)
  Downloading tqdm-4.66.5-py3-none-any.whl.metadata (57 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 57.6/57.6 kB 4.6 MB/s eta 0:00:00
Collecting sparse==0.15.4 (from ulamdyn==1.1.1)
  Downloading sparse-0.15.4-py2.py3-none-any.whl.metadata (4.5 kB)
Requirement already satisfied: matplotlib>=3.3.4 in /usr/local/lib/python3.10/dist-packages (from ase==3.23.0->ulamdyn==1.1.1) (3.8.0)
Requirement already satisfied: click>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from black==24.8.0->ulamdyn==1.1.1) (8.1.7)
Collecting mypy-extensions>=0.4.3 (from black==24.8.0->ulamdyn==1.1.1)
  Downloading mypy_extensions-1.0.0-py3-none-any.whl.metadata (1.1 kB)
Requirement already satisfied: packaging>=22.0 in /usr/local/lib/python3.10/dist-packages (from black==24.8.0->ulamdyn==1.1.1) (24.2)
Collecting pathspec>=0.9.0 (from black==24.8.0->ulamdyn==1.1.1)
  Downloading pathspec-0.12.1-py3-none-any.whl.metadata (21 kB)
Requirement already satisfied: platformdirs>=2 in /usr/local/lib/python3.10/dist-packages (from black==24.8.0->ulamdyn==1.1.1) (4.3.6)
Requirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from black==24.8.0->ulamdyn==1.1.1) (2.0.2)
Requirement already satisfied: typing-extensions>=4.0.1 in /usr/local/lib/python3.10/dist-packages (from black==24.8.0->ulamdyn==1.1.1) (4.12.2)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas==2.2.2->ulamdyn==1.1.1) (2.8.2)
Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas==2.2.2->ulamdyn==1.1.1) (2024.2)
Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn==1.5.1->ulamdyn==1.1.1) (3.5.0)
Requirement already satisfied: numba>=0.49 in /usr/local/lib/python3.10/dist-packages (from sparse==0.15.4->ulamdyn==1.1.1) (0.60.0)
Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.4->ase==3.23.0->ulamdyn==1.1.1) (1.3.0)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.4->ase==3.23.0->ulamdyn==1.1.1) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.4->ase==3.23.0->ulamdyn==1.1.1) (4.54.1)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.4->ase==3.23.0->ulamdyn==1.1.1) (1.4.7)
Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.4->ase==3.23.0->ulamdyn==1.1.1) (11.0.0)
Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.4->ase==3.23.0->ulamdyn==1.1.1) (3.2.0)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /usr/local/lib/python3.10/dist-packages (from numba>=0.49->sparse==0.15.4->ulamdyn==1.1.1) (0.43.0)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas==2.2.2->ulamdyn==1.1.1) (1.16.0)
Downloading ase-3.23.0-py3-none-any.whl (2.9 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.9/2.9 MB 61.7 MB/s eta 0:00:00
Downloading black-24.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl (1.8 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.8/1.8 MB 69.5 MB/s eta 0:00:00
Downloading dscribe-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.5/12.5 MB 94.2 MB/s eta 0:00:00
Downloading h5py-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.3/5.3 MB 94.6 MB/s eta 0:00:00
Downloading numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 18.2/18.2 MB 83.2 MB/s eta 0:00:00
Downloading pytz-2024.1-py2.py3-none-any.whl (505 kB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 505.5/505.5 kB 37.6 MB/s eta 0:00:00
Downloading rmsd-1.5.1-py3-none-any.whl (17 kB)
Downloading scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 13.4/13.4 MB 95.6 MB/s eta 0:00:00
Downloading scipy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (41.2 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 41.2/41.2 MB 13.0 MB/s eta 0:00:00
Downloading setuptools-73.0.1-py3-none-any.whl (2.3 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.3/2.3 MB 78.4 MB/s eta 0:00:00
Downloading sparse-0.15.4-py2.py3-none-any.whl (237 kB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 237.3/237.3 kB 20.3 MB/s eta 0:00:00
Downloading tqdm-4.66.5-py3-none-any.whl (78 kB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 78.4/78.4 kB 7.9 MB/s eta 0:00:00
Downloading tslearn-0.6.3-py3-none-any.whl (374 kB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 374.4/374.4 kB 28.6 MB/s eta 0:00:00
Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)
Downloading pathspec-0.12.1-py3-none-any.whl (31 kB)
Building wheels for collected packages: ulamdyn
  Building wheel for ulamdyn (pyproject.toml): started
  Building wheel for ulamdyn (pyproject.toml): finished with status 'done'
  Created wheel for ulamdyn: filename=ulamdyn-1.1.1-py3-none-any.whl size=86157 sha256=5a5f0d80df47d16ad88bac19a2327dd814ae7bd8fb7cdac18ce42057384584e8
  Stored in directory: /tmp/pip-ephem-wheel-cache-3qpjwb54/wheels/ea/44/6c/17ce24d141475292bbb4c82ed8acc25f0b63a566b8af3500fc
Successfully built ulamdyn
Installing collected packages: pytz, tqdm, setuptools, pathspec, numpy, mypy-extensions, scipy, h5py, black, sparse, scikit-learn, rmsd, tslearn, ase, dscribe, ulamdyn
  Attempting uninstall: pytz
    Found existing installation: pytz 2024.2
    Uninstalling pytz-2024.2:
      Successfully uninstalled pytz-2024.2
  Attempting uninstall: tqdm
    Found existing installation: tqdm 4.66.6
    Uninstalling tqdm-4.66.6:
      Successfully uninstalled tqdm-4.66.6
  Attempting uninstall: setuptools
    Found existing installation: setuptools 75.1.0
    Uninstalling setuptools-75.1.0:
      Successfully uninstalled setuptools-75.1.0
  Attempting uninstall: numpy
    Found existing installation: numpy 1.26.4
    Uninstalling numpy-1.26.4:
      Successfully uninstalled numpy-1.26.4
  Attempting uninstall: scipy
    Found existing installation: scipy 1.13.1
    Uninstalling scipy-1.13.1:
      Successfully uninstalled scipy-1.13.1
  Attempting uninstall: h5py
    Found existing installation: h5py 3.12.1
    Uninstalling h5py-3.12.1:
      Successfully uninstalled h5py-3.12.1
  Attempting uninstall: scikit-learn
    Found existing installation: scikit-learn 1.5.2
    Uninstalling scikit-learn-1.5.2:
      Successfully uninstalled scikit-learn-1.5.2
Successfully installed ase-3.23.0 black-24.8.0 dscribe-2.1.1 h5py-3.11.0 mypy-extensions-1.0.0 numpy-1.26.2 pathspec-0.12.1 pytz-2024.1 rmsd-1.5.1 scikit-learn-1.5.1 scipy-1.14.1 setuptools-73.0.1 sparse-0.15.4 tqdm-4.66.5 tslearn-0.6.3 ulamdyn-1.1.1
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
ipython 7.34.0 requires jedi>=0.16, which is not installed.
gensim 4.3.3 requires scipy<1.14.0,>=1.7.0, but you have scipy 1.14.1 which is incompatible.
[3]:
%%bash

pip install py3Dmol
Collecting py3Dmol
  Downloading py3Dmol-2.4.2-py2.py3-none-any.whl.metadata (1.9 kB)
Downloading py3Dmol-2.4.2-py2.py3-none-any.whl (7.0 kB)
Installing collected packages: py3Dmol
Successfully installed py3Dmol-2.4.2

The NAMD dataset: fulvene

The fulvene is used in this tutorial as an example of photoactive molecule that undergoes structural transformation in a nonadiabatic dynamics simulations starting from the first excited-state. To generate the fulvene dataset, the Newton-X program was used to propagate 200 surface hopping trajectories up to 60 fs with a time step of 0.1 fs. The CAS(6,6)/6-31G* method was used to compute the quantum chemical properties for the two electronic states (S\(_0\) and S\(_1\)). For the sake of time and simplicity, only a fraction of the total number of trajectories (50 trajectories) was selected for the tutorial. The full dataset is available to download at https://doi.org/10.6084/m9.figshare.14446998.v1.

[4]:
%%bash

wget https://github.com/maxjr82/smlqc_ulamdyn/raw/main/nx_trajs_fulv.tgz
tar -zxvf nx_trajs_fulv.tgz
rm -rf nx_trajs_fulv.tgz
nx_trajs_fulv/
nx_trajs_fulv/geom.xyz
nx_trajs_fulv/TRAJ1/
nx_trajs_fulv/TRAJ1/jiri.inp
nx_trajs_fulv/TRAJ1/geom
nx_trajs_fulv/TRAJ1/control.dyn
nx_trajs_fulv/TRAJ1/columbus.par
nx_trajs_fulv/TRAJ1/sh.inp
nx_trajs_fulv/TRAJ1/RESULTS/
nx_trajs_fulv/TRAJ1/RESULTS/sh.out
nx_trajs_fulv/TRAJ1/RESULTS/tprob
nx_trajs_fulv/TRAJ1/RESULTS/dyn.out
nx_trajs_fulv/TRAJ1/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ1/RESULTS/report.ci
nx_trajs_fulv/TRAJ1/RESULTS/nx.log
nx_trajs_fulv/TRAJ1/RESULTS/properties
nx_trajs_fulv/TRAJ1/RESULTS/intec
nx_trajs_fulv/TRAJ1/RESULTS/en.dat
nx_trajs_fulv/TRAJ1/veloc
nx_trajs_fulv/TRAJ3/
nx_trajs_fulv/TRAJ3/jiri.inp
nx_trajs_fulv/TRAJ3/geom
nx_trajs_fulv/TRAJ3/control.dyn
nx_trajs_fulv/TRAJ3/columbus.par
nx_trajs_fulv/TRAJ3/sh.inp
nx_trajs_fulv/TRAJ3/RESULTS/
nx_trajs_fulv/TRAJ3/RESULTS/sh.out
nx_trajs_fulv/TRAJ3/RESULTS/tprob
nx_trajs_fulv/TRAJ3/RESULTS/dyn.out
nx_trajs_fulv/TRAJ3/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ3/RESULTS/bak.dyn.out
nx_trajs_fulv/TRAJ3/RESULTS/report.ci
nx_trajs_fulv/TRAJ3/RESULTS/nx.log
nx_trajs_fulv/TRAJ3/RESULTS/properties
nx_trajs_fulv/TRAJ3/RESULTS/intec
nx_trajs_fulv/TRAJ3/RESULTS/en.dat
nx_trajs_fulv/TRAJ3/veloc
nx_trajs_fulv/TRAJ41/
nx_trajs_fulv/TRAJ41/jiri.inp
nx_trajs_fulv/TRAJ41/geom
nx_trajs_fulv/TRAJ41/control.dyn
nx_trajs_fulv/TRAJ41/columbus.par
nx_trajs_fulv/TRAJ41/sh.inp
nx_trajs_fulv/TRAJ41/RESULTS/
nx_trajs_fulv/TRAJ41/RESULTS/sh.out
nx_trajs_fulv/TRAJ41/RESULTS/tprob
nx_trajs_fulv/TRAJ41/RESULTS/dyn.out
nx_trajs_fulv/TRAJ41/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ41/RESULTS/report.ci
nx_trajs_fulv/TRAJ41/RESULTS/nx.log
nx_trajs_fulv/TRAJ41/RESULTS/properties
nx_trajs_fulv/TRAJ41/RESULTS/intec
nx_trajs_fulv/TRAJ41/RESULTS/en.dat
nx_trajs_fulv/TRAJ41/veloc
nx_trajs_fulv/TRAJ42/
nx_trajs_fulv/TRAJ42/jiri.inp
nx_trajs_fulv/TRAJ42/geom
nx_trajs_fulv/TRAJ42/control.dyn
nx_trajs_fulv/TRAJ42/columbus.par
nx_trajs_fulv/TRAJ42/sh.inp
nx_trajs_fulv/TRAJ42/RESULTS/
nx_trajs_fulv/TRAJ42/RESULTS/sh.out
nx_trajs_fulv/TRAJ42/RESULTS/tprob
nx_trajs_fulv/TRAJ42/RESULTS/dyn.out
nx_trajs_fulv/TRAJ42/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ42/RESULTS/report.ci
nx_trajs_fulv/TRAJ42/RESULTS/nx.log
nx_trajs_fulv/TRAJ42/RESULTS/properties
nx_trajs_fulv/TRAJ42/RESULTS/intec
nx_trajs_fulv/TRAJ42/RESULTS/en.dat
nx_trajs_fulv/TRAJ42/veloc
nx_trajs_fulv/TRAJ46/
nx_trajs_fulv/TRAJ46/jiri.inp
nx_trajs_fulv/TRAJ46/geom
nx_trajs_fulv/TRAJ46/control.dyn
nx_trajs_fulv/TRAJ46/columbus.par
nx_trajs_fulv/TRAJ46/sh.inp
nx_trajs_fulv/TRAJ46/RESULTS/
nx_trajs_fulv/TRAJ46/RESULTS/sh.out
nx_trajs_fulv/TRAJ46/RESULTS/tprob
nx_trajs_fulv/TRAJ46/RESULTS/dyn.out
nx_trajs_fulv/TRAJ46/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ46/RESULTS/report.ci
nx_trajs_fulv/TRAJ46/RESULTS/nx.log
nx_trajs_fulv/TRAJ46/RESULTS/properties
nx_trajs_fulv/TRAJ46/RESULTS/intec
nx_trajs_fulv/TRAJ46/RESULTS/en.dat
nx_trajs_fulv/TRAJ46/veloc
nx_trajs_fulv/TRAJ2/
nx_trajs_fulv/TRAJ2/jiri.inp
nx_trajs_fulv/TRAJ2/geom
nx_trajs_fulv/TRAJ2/control.dyn
nx_trajs_fulv/TRAJ2/columbus.par
nx_trajs_fulv/TRAJ2/sh.inp
nx_trajs_fulv/TRAJ2/RESULTS/
nx_trajs_fulv/TRAJ2/RESULTS/sh.out
nx_trajs_fulv/TRAJ2/RESULTS/tprob
nx_trajs_fulv/TRAJ2/RESULTS/dyn.out
nx_trajs_fulv/TRAJ2/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ2/RESULTS/report.ci
nx_trajs_fulv/TRAJ2/RESULTS/nx.log
nx_trajs_fulv/TRAJ2/RESULTS/properties
nx_trajs_fulv/TRAJ2/RESULTS/intec
nx_trajs_fulv/TRAJ2/RESULTS/en.dat
nx_trajs_fulv/TRAJ2/veloc
nx_trajs_fulv/TRAJ4/
nx_trajs_fulv/TRAJ4/jiri.inp
nx_trajs_fulv/TRAJ4/geom
nx_trajs_fulv/TRAJ4/control.dyn
nx_trajs_fulv/TRAJ4/columbus.par
nx_trajs_fulv/TRAJ4/sh.inp
nx_trajs_fulv/TRAJ4/RESULTS/
nx_trajs_fulv/TRAJ4/RESULTS/sh.out
nx_trajs_fulv/TRAJ4/RESULTS/tprob
nx_trajs_fulv/TRAJ4/RESULTS/dyn.out
nx_trajs_fulv/TRAJ4/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ4/RESULTS/report.ci
nx_trajs_fulv/TRAJ4/RESULTS/nx.log
nx_trajs_fulv/TRAJ4/RESULTS/properties
nx_trajs_fulv/TRAJ4/RESULTS/intec
nx_trajs_fulv/TRAJ4/RESULTS/en.dat
nx_trajs_fulv/TRAJ4/veloc
nx_trajs_fulv/TRAJ5/
nx_trajs_fulv/TRAJ5/jiri.inp
nx_trajs_fulv/TRAJ5/geom
nx_trajs_fulv/TRAJ5/control.dyn
nx_trajs_fulv/TRAJ5/columbus.par
nx_trajs_fulv/TRAJ5/sh.inp
nx_trajs_fulv/TRAJ5/RESULTS/
nx_trajs_fulv/TRAJ5/RESULTS/sh.out
nx_trajs_fulv/TRAJ5/RESULTS/tprob
nx_trajs_fulv/TRAJ5/RESULTS/dyn.out
nx_trajs_fulv/TRAJ5/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ5/RESULTS/report.ci
nx_trajs_fulv/TRAJ5/RESULTS/nx.log
nx_trajs_fulv/TRAJ5/RESULTS/properties
nx_trajs_fulv/TRAJ5/RESULTS/intec
nx_trajs_fulv/TRAJ5/RESULTS/en.dat
nx_trajs_fulv/TRAJ5/veloc
nx_trajs_fulv/TRAJ6/
nx_trajs_fulv/TRAJ6/jiri.inp
nx_trajs_fulv/TRAJ6/geom
nx_trajs_fulv/TRAJ6/control.dyn
nx_trajs_fulv/TRAJ6/columbus.par
nx_trajs_fulv/TRAJ6/sh.inp
nx_trajs_fulv/TRAJ6/RESULTS/
nx_trajs_fulv/TRAJ6/RESULTS/sh.out
nx_trajs_fulv/TRAJ6/RESULTS/tprob
nx_trajs_fulv/TRAJ6/RESULTS/dyn.out
nx_trajs_fulv/TRAJ6/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ6/RESULTS/report.ci
nx_trajs_fulv/TRAJ6/RESULTS/nx.log
nx_trajs_fulv/TRAJ6/RESULTS/properties
nx_trajs_fulv/TRAJ6/RESULTS/intec
nx_trajs_fulv/TRAJ6/RESULTS/en.dat
nx_trajs_fulv/TRAJ6/veloc
nx_trajs_fulv/TRAJ7/
nx_trajs_fulv/TRAJ7/jiri.inp
nx_trajs_fulv/TRAJ7/geom
nx_trajs_fulv/TRAJ7/control.dyn
nx_trajs_fulv/TRAJ7/columbus.par
nx_trajs_fulv/TRAJ7/sh.inp
nx_trajs_fulv/TRAJ7/RESULTS/
nx_trajs_fulv/TRAJ7/RESULTS/sh.out
nx_trajs_fulv/TRAJ7/RESULTS/tprob
nx_trajs_fulv/TRAJ7/RESULTS/dyn.out
nx_trajs_fulv/TRAJ7/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ7/RESULTS/report.ci
nx_trajs_fulv/TRAJ7/RESULTS/nx.log
nx_trajs_fulv/TRAJ7/RESULTS/properties
nx_trajs_fulv/TRAJ7/RESULTS/intec
nx_trajs_fulv/TRAJ7/RESULTS/en.dat
nx_trajs_fulv/TRAJ7/veloc
nx_trajs_fulv/TRAJ8/
nx_trajs_fulv/TRAJ8/jiri.inp
nx_trajs_fulv/TRAJ8/geom
nx_trajs_fulv/TRAJ8/control.dyn
nx_trajs_fulv/TRAJ8/columbus.par
nx_trajs_fulv/TRAJ8/sh.inp
nx_trajs_fulv/TRAJ8/RESULTS/
nx_trajs_fulv/TRAJ8/RESULTS/sh.out
nx_trajs_fulv/TRAJ8/RESULTS/tprob
nx_trajs_fulv/TRAJ8/RESULTS/dyn.out
nx_trajs_fulv/TRAJ8/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ8/RESULTS/report.ci
nx_trajs_fulv/TRAJ8/RESULTS/nx.log
nx_trajs_fulv/TRAJ8/RESULTS/properties
nx_trajs_fulv/TRAJ8/RESULTS/intec
nx_trajs_fulv/TRAJ8/RESULTS/en.dat
nx_trajs_fulv/TRAJ8/veloc
nx_trajs_fulv/TRAJ9/
nx_trajs_fulv/TRAJ9/jiri.inp
nx_trajs_fulv/TRAJ9/geom
nx_trajs_fulv/TRAJ9/control.dyn
nx_trajs_fulv/TRAJ9/columbus.par
nx_trajs_fulv/TRAJ9/sh.inp
nx_trajs_fulv/TRAJ9/RESULTS/
nx_trajs_fulv/TRAJ9/RESULTS/sh.out
nx_trajs_fulv/TRAJ9/RESULTS/tprob
nx_trajs_fulv/TRAJ9/RESULTS/dyn.out
nx_trajs_fulv/TRAJ9/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ9/RESULTS/report.ci
nx_trajs_fulv/TRAJ9/RESULTS/nx.log
nx_trajs_fulv/TRAJ9/RESULTS/properties
nx_trajs_fulv/TRAJ9/RESULTS/intec
nx_trajs_fulv/TRAJ9/RESULTS/en.dat
nx_trajs_fulv/TRAJ9/veloc
nx_trajs_fulv/TRAJ10/
nx_trajs_fulv/TRAJ10/jiri.inp
nx_trajs_fulv/TRAJ10/geom
nx_trajs_fulv/TRAJ10/control.dyn
nx_trajs_fulv/TRAJ10/columbus.par
nx_trajs_fulv/TRAJ10/sh.inp
nx_trajs_fulv/TRAJ10/RESULTS/
nx_trajs_fulv/TRAJ10/RESULTS/sh.out
nx_trajs_fulv/TRAJ10/RESULTS/tprob
nx_trajs_fulv/TRAJ10/RESULTS/dyn.out
nx_trajs_fulv/TRAJ10/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ10/RESULTS/report.ci
nx_trajs_fulv/TRAJ10/RESULTS/nx.log
nx_trajs_fulv/TRAJ10/RESULTS/properties
nx_trajs_fulv/TRAJ10/RESULTS/intec
nx_trajs_fulv/TRAJ10/RESULTS/en.dat
nx_trajs_fulv/TRAJ10/veloc
nx_trajs_fulv/TRAJ11/
nx_trajs_fulv/TRAJ11/jiri.inp
nx_trajs_fulv/TRAJ11/geom
nx_trajs_fulv/TRAJ11/control.dyn
nx_trajs_fulv/TRAJ11/columbus.par
nx_trajs_fulv/TRAJ11/sh.inp
nx_trajs_fulv/TRAJ11/RESULTS/
nx_trajs_fulv/TRAJ11/RESULTS/sh.out
nx_trajs_fulv/TRAJ11/RESULTS/tprob
nx_trajs_fulv/TRAJ11/RESULTS/dyn.out
nx_trajs_fulv/TRAJ11/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ11/RESULTS/report.ci
nx_trajs_fulv/TRAJ11/RESULTS/nx.log
nx_trajs_fulv/TRAJ11/RESULTS/properties
nx_trajs_fulv/TRAJ11/RESULTS/intec
nx_trajs_fulv/TRAJ11/RESULTS/en.dat
nx_trajs_fulv/TRAJ11/veloc
nx_trajs_fulv/TRAJ12/
nx_trajs_fulv/TRAJ12/jiri.inp
nx_trajs_fulv/TRAJ12/geom
nx_trajs_fulv/TRAJ12/control.dyn
nx_trajs_fulv/TRAJ12/columbus.par
nx_trajs_fulv/TRAJ12/sh.inp
nx_trajs_fulv/TRAJ12/RESULTS/
nx_trajs_fulv/TRAJ12/RESULTS/sh.out
nx_trajs_fulv/TRAJ12/RESULTS/tprob
nx_trajs_fulv/TRAJ12/RESULTS/dyn.out
nx_trajs_fulv/TRAJ12/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ12/RESULTS/report.ci
nx_trajs_fulv/TRAJ12/RESULTS/nx.log
nx_trajs_fulv/TRAJ12/RESULTS/properties
nx_trajs_fulv/TRAJ12/RESULTS/intec
nx_trajs_fulv/TRAJ12/RESULTS/en.dat
nx_trajs_fulv/TRAJ12/veloc
nx_trajs_fulv/TRAJ13/
nx_trajs_fulv/TRAJ13/jiri.inp
nx_trajs_fulv/TRAJ13/geom
nx_trajs_fulv/TRAJ13/control.dyn
nx_trajs_fulv/TRAJ13/columbus.par
nx_trajs_fulv/TRAJ13/sh.inp
nx_trajs_fulv/TRAJ13/RESULTS/
nx_trajs_fulv/TRAJ13/RESULTS/sh.out
nx_trajs_fulv/TRAJ13/RESULTS/tprob
nx_trajs_fulv/TRAJ13/RESULTS/dyn.out
nx_trajs_fulv/TRAJ13/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ13/RESULTS/report.ci
nx_trajs_fulv/TRAJ13/RESULTS/nx.log
nx_trajs_fulv/TRAJ13/RESULTS/properties
nx_trajs_fulv/TRAJ13/RESULTS/intec
nx_trajs_fulv/TRAJ13/RESULTS/en.dat
nx_trajs_fulv/TRAJ13/veloc
nx_trajs_fulv/TRAJ14/
nx_trajs_fulv/TRAJ14/jiri.inp
nx_trajs_fulv/TRAJ14/geom
nx_trajs_fulv/TRAJ14/control.dyn
nx_trajs_fulv/TRAJ14/columbus.par
nx_trajs_fulv/TRAJ14/sh.inp
nx_trajs_fulv/TRAJ14/RESULTS/
nx_trajs_fulv/TRAJ14/RESULTS/sh.out
nx_trajs_fulv/TRAJ14/RESULTS/tprob
nx_trajs_fulv/TRAJ14/RESULTS/dyn.out
nx_trajs_fulv/TRAJ14/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ14/RESULTS/report.ci
nx_trajs_fulv/TRAJ14/RESULTS/nx.log
nx_trajs_fulv/TRAJ14/RESULTS/properties
nx_trajs_fulv/TRAJ14/RESULTS/intec
nx_trajs_fulv/TRAJ14/RESULTS/en.dat
nx_trajs_fulv/TRAJ14/veloc
nx_trajs_fulv/TRAJ15/
nx_trajs_fulv/TRAJ15/jiri.inp
nx_trajs_fulv/TRAJ15/geom
nx_trajs_fulv/TRAJ15/control.dyn
nx_trajs_fulv/TRAJ15/columbus.par
nx_trajs_fulv/TRAJ15/sh.inp
nx_trajs_fulv/TRAJ15/RESULTS/
nx_trajs_fulv/TRAJ15/RESULTS/sh.out
nx_trajs_fulv/TRAJ15/RESULTS/tprob
nx_trajs_fulv/TRAJ15/RESULTS/dyn.out
nx_trajs_fulv/TRAJ15/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ15/RESULTS/report.ci
nx_trajs_fulv/TRAJ15/RESULTS/nx.log
nx_trajs_fulv/TRAJ15/RESULTS/properties
nx_trajs_fulv/TRAJ15/RESULTS/intec
nx_trajs_fulv/TRAJ15/RESULTS/en.dat
nx_trajs_fulv/TRAJ15/veloc
nx_trajs_fulv/TRAJ16/
nx_trajs_fulv/TRAJ16/jiri.inp
nx_trajs_fulv/TRAJ16/geom
nx_trajs_fulv/TRAJ16/control.dyn
nx_trajs_fulv/TRAJ16/columbus.par
nx_trajs_fulv/TRAJ16/sh.inp
nx_trajs_fulv/TRAJ16/RESULTS/
nx_trajs_fulv/TRAJ16/RESULTS/sh.out
nx_trajs_fulv/TRAJ16/RESULTS/tprob
nx_trajs_fulv/TRAJ16/RESULTS/dyn.out
nx_trajs_fulv/TRAJ16/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ16/RESULTS/report.ci
nx_trajs_fulv/TRAJ16/RESULTS/nx.log
nx_trajs_fulv/TRAJ16/RESULTS/properties
nx_trajs_fulv/TRAJ16/RESULTS/intec
nx_trajs_fulv/TRAJ16/RESULTS/en.dat
nx_trajs_fulv/TRAJ16/veloc
nx_trajs_fulv/TRAJ17/
nx_trajs_fulv/TRAJ17/jiri.inp
nx_trajs_fulv/TRAJ17/geom
nx_trajs_fulv/TRAJ17/control.dyn
nx_trajs_fulv/TRAJ17/columbus.par
nx_trajs_fulv/TRAJ17/sh.inp
nx_trajs_fulv/TRAJ17/RESULTS/
nx_trajs_fulv/TRAJ17/RESULTS/sh.out
nx_trajs_fulv/TRAJ17/RESULTS/tprob
nx_trajs_fulv/TRAJ17/RESULTS/dyn.out
nx_trajs_fulv/TRAJ17/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ17/RESULTS/report.ci
nx_trajs_fulv/TRAJ17/RESULTS/nx.log
nx_trajs_fulv/TRAJ17/RESULTS/properties
nx_trajs_fulv/TRAJ17/RESULTS/intec
nx_trajs_fulv/TRAJ17/RESULTS/en.dat
nx_trajs_fulv/TRAJ17/veloc
nx_trajs_fulv/TRAJ18/
nx_trajs_fulv/TRAJ18/jiri.inp
nx_trajs_fulv/TRAJ18/geom
nx_trajs_fulv/TRAJ18/control.dyn
nx_trajs_fulv/TRAJ18/columbus.par
nx_trajs_fulv/TRAJ18/sh.inp
nx_trajs_fulv/TRAJ18/RESULTS/
nx_trajs_fulv/TRAJ18/RESULTS/sh.out
nx_trajs_fulv/TRAJ18/RESULTS/tprob
nx_trajs_fulv/TRAJ18/RESULTS/dyn.out
nx_trajs_fulv/TRAJ18/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ18/RESULTS/report.ci
nx_trajs_fulv/TRAJ18/RESULTS/nx.log
nx_trajs_fulv/TRAJ18/RESULTS/properties
nx_trajs_fulv/TRAJ18/RESULTS/intec
nx_trajs_fulv/TRAJ18/RESULTS/en.dat
nx_trajs_fulv/TRAJ18/veloc
nx_trajs_fulv/TRAJ19/
nx_trajs_fulv/TRAJ19/jiri.inp
nx_trajs_fulv/TRAJ19/geom
nx_trajs_fulv/TRAJ19/control.dyn
nx_trajs_fulv/TRAJ19/columbus.par
nx_trajs_fulv/TRAJ19/sh.inp
nx_trajs_fulv/TRAJ19/RESULTS/
nx_trajs_fulv/TRAJ19/RESULTS/sh.out
nx_trajs_fulv/TRAJ19/RESULTS/tprob
nx_trajs_fulv/TRAJ19/RESULTS/dyn.out
nx_trajs_fulv/TRAJ19/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ19/RESULTS/report.ci
nx_trajs_fulv/TRAJ19/RESULTS/nx.log
nx_trajs_fulv/TRAJ19/RESULTS/properties
nx_trajs_fulv/TRAJ19/RESULTS/intec
nx_trajs_fulv/TRAJ19/RESULTS/en.dat
nx_trajs_fulv/TRAJ19/veloc
nx_trajs_fulv/TRAJ20/
nx_trajs_fulv/TRAJ20/jiri.inp
nx_trajs_fulv/TRAJ20/geom
nx_trajs_fulv/TRAJ20/control.dyn
nx_trajs_fulv/TRAJ20/columbus.par
nx_trajs_fulv/TRAJ20/sh.inp
nx_trajs_fulv/TRAJ20/RESULTS/
nx_trajs_fulv/TRAJ20/RESULTS/sh.out
nx_trajs_fulv/TRAJ20/RESULTS/tprob
nx_trajs_fulv/TRAJ20/RESULTS/dyn.out
nx_trajs_fulv/TRAJ20/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ20/RESULTS/report.ci
nx_trajs_fulv/TRAJ20/RESULTS/nx.log
nx_trajs_fulv/TRAJ20/RESULTS/properties
nx_trajs_fulv/TRAJ20/RESULTS/intec
nx_trajs_fulv/TRAJ20/RESULTS/en.dat
nx_trajs_fulv/TRAJ20/veloc
nx_trajs_fulv/TRAJ21/
nx_trajs_fulv/TRAJ21/jiri.inp
nx_trajs_fulv/TRAJ21/geom
nx_trajs_fulv/TRAJ21/control.dyn
nx_trajs_fulv/TRAJ21/columbus.par
nx_trajs_fulv/TRAJ21/sh.inp
nx_trajs_fulv/TRAJ21/RESULTS/
nx_trajs_fulv/TRAJ21/RESULTS/sh.out
nx_trajs_fulv/TRAJ21/RESULTS/tprob
nx_trajs_fulv/TRAJ21/RESULTS/dyn.out
nx_trajs_fulv/TRAJ21/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ21/RESULTS/report.ci
nx_trajs_fulv/TRAJ21/RESULTS/nx.log
nx_trajs_fulv/TRAJ21/RESULTS/properties
nx_trajs_fulv/TRAJ21/RESULTS/intec
nx_trajs_fulv/TRAJ21/RESULTS/en.dat
nx_trajs_fulv/TRAJ21/veloc
nx_trajs_fulv/TRAJ22/
nx_trajs_fulv/TRAJ22/jiri.inp
nx_trajs_fulv/TRAJ22/geom
nx_trajs_fulv/TRAJ22/control.dyn
nx_trajs_fulv/TRAJ22/columbus.par
nx_trajs_fulv/TRAJ22/sh.inp
nx_trajs_fulv/TRAJ22/RESULTS/
nx_trajs_fulv/TRAJ22/RESULTS/sh.out
nx_trajs_fulv/TRAJ22/RESULTS/tprob
nx_trajs_fulv/TRAJ22/RESULTS/dyn.out
nx_trajs_fulv/TRAJ22/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ22/RESULTS/report.ci
nx_trajs_fulv/TRAJ22/RESULTS/nx.log
nx_trajs_fulv/TRAJ22/RESULTS/properties
nx_trajs_fulv/TRAJ22/RESULTS/intec
nx_trajs_fulv/TRAJ22/RESULTS/en.dat
nx_trajs_fulv/TRAJ22/veloc
nx_trajs_fulv/TRAJ23/
nx_trajs_fulv/TRAJ23/jiri.inp
nx_trajs_fulv/TRAJ23/geom
nx_trajs_fulv/TRAJ23/control.dyn
nx_trajs_fulv/TRAJ23/columbus.par
nx_trajs_fulv/TRAJ23/sh.inp
nx_trajs_fulv/TRAJ23/RESULTS/
nx_trajs_fulv/TRAJ23/RESULTS/sh.out
nx_trajs_fulv/TRAJ23/RESULTS/tprob
nx_trajs_fulv/TRAJ23/RESULTS/dyn.out
nx_trajs_fulv/TRAJ23/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ23/RESULTS/report.ci
nx_trajs_fulv/TRAJ23/RESULTS/nx.log
nx_trajs_fulv/TRAJ23/RESULTS/properties
nx_trajs_fulv/TRAJ23/RESULTS/intec
nx_trajs_fulv/TRAJ23/RESULTS/en.dat
nx_trajs_fulv/TRAJ23/veloc
nx_trajs_fulv/TRAJ24/
nx_trajs_fulv/TRAJ24/jiri.inp
nx_trajs_fulv/TRAJ24/geom
nx_trajs_fulv/TRAJ24/control.dyn
nx_trajs_fulv/TRAJ24/columbus.par
nx_trajs_fulv/TRAJ24/sh.inp
nx_trajs_fulv/TRAJ24/RESULTS/
nx_trajs_fulv/TRAJ24/RESULTS/sh.out
nx_trajs_fulv/TRAJ24/RESULTS/tprob
nx_trajs_fulv/TRAJ24/RESULTS/dyn.out
nx_trajs_fulv/TRAJ24/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ24/RESULTS/report.ci
nx_trajs_fulv/TRAJ24/RESULTS/nx.log
nx_trajs_fulv/TRAJ24/RESULTS/properties
nx_trajs_fulv/TRAJ24/RESULTS/intec
nx_trajs_fulv/TRAJ24/RESULTS/en.dat
nx_trajs_fulv/TRAJ24/veloc
nx_trajs_fulv/TRAJ25/
nx_trajs_fulv/TRAJ25/jiri.inp
nx_trajs_fulv/TRAJ25/geom
nx_trajs_fulv/TRAJ25/control.dyn
nx_trajs_fulv/TRAJ25/columbus.par
nx_trajs_fulv/TRAJ25/sh.inp
nx_trajs_fulv/TRAJ25/RESULTS/
nx_trajs_fulv/TRAJ25/RESULTS/sh.out
nx_trajs_fulv/TRAJ25/RESULTS/tprob
nx_trajs_fulv/TRAJ25/RESULTS/dyn.out
nx_trajs_fulv/TRAJ25/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ25/RESULTS/report.ci
nx_trajs_fulv/TRAJ25/RESULTS/nx.log
nx_trajs_fulv/TRAJ25/RESULTS/properties
nx_trajs_fulv/TRAJ25/RESULTS/intec
nx_trajs_fulv/TRAJ25/RESULTS/en.dat
nx_trajs_fulv/TRAJ25/veloc
nx_trajs_fulv/TRAJ26/
nx_trajs_fulv/TRAJ26/jiri.inp
nx_trajs_fulv/TRAJ26/geom
nx_trajs_fulv/TRAJ26/control.dyn
nx_trajs_fulv/TRAJ26/columbus.par
nx_trajs_fulv/TRAJ26/sh.inp
nx_trajs_fulv/TRAJ26/RESULTS/
nx_trajs_fulv/TRAJ26/RESULTS/sh.out
nx_trajs_fulv/TRAJ26/RESULTS/tprob
nx_trajs_fulv/TRAJ26/RESULTS/dyn.out
nx_trajs_fulv/TRAJ26/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ26/RESULTS/report.ci
nx_trajs_fulv/TRAJ26/RESULTS/nx.log
nx_trajs_fulv/TRAJ26/RESULTS/properties
nx_trajs_fulv/TRAJ26/RESULTS/intec
nx_trajs_fulv/TRAJ26/RESULTS/en.dat
nx_trajs_fulv/TRAJ26/veloc
nx_trajs_fulv/TRAJ27/
nx_trajs_fulv/TRAJ27/jiri.inp
nx_trajs_fulv/TRAJ27/geom
nx_trajs_fulv/TRAJ27/control.dyn
nx_trajs_fulv/TRAJ27/columbus.par
nx_trajs_fulv/TRAJ27/sh.inp
nx_trajs_fulv/TRAJ27/RESULTS/
nx_trajs_fulv/TRAJ27/RESULTS/sh.out
nx_trajs_fulv/TRAJ27/RESULTS/tprob
nx_trajs_fulv/TRAJ27/RESULTS/dyn.out
nx_trajs_fulv/TRAJ27/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ27/RESULTS/report.ci
nx_trajs_fulv/TRAJ27/RESULTS/nx.log
nx_trajs_fulv/TRAJ27/RESULTS/properties
nx_trajs_fulv/TRAJ27/RESULTS/intec
nx_trajs_fulv/TRAJ27/RESULTS/en.dat
nx_trajs_fulv/TRAJ27/veloc
nx_trajs_fulv/TRAJ28/
nx_trajs_fulv/TRAJ28/jiri.inp
nx_trajs_fulv/TRAJ28/geom
nx_trajs_fulv/TRAJ28/control.dyn
nx_trajs_fulv/TRAJ28/columbus.par
nx_trajs_fulv/TRAJ28/sh.inp
nx_trajs_fulv/TRAJ28/RESULTS/
nx_trajs_fulv/TRAJ28/RESULTS/sh.out
nx_trajs_fulv/TRAJ28/RESULTS/tprob
nx_trajs_fulv/TRAJ28/RESULTS/dyn.out
nx_trajs_fulv/TRAJ28/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ28/RESULTS/report.ci
nx_trajs_fulv/TRAJ28/RESULTS/nx.log
nx_trajs_fulv/TRAJ28/RESULTS/properties
nx_trajs_fulv/TRAJ28/RESULTS/intec
nx_trajs_fulv/TRAJ28/RESULTS/en.dat
nx_trajs_fulv/TRAJ28/veloc
nx_trajs_fulv/TRAJ29/
nx_trajs_fulv/TRAJ29/jiri.inp
nx_trajs_fulv/TRAJ29/geom
nx_trajs_fulv/TRAJ29/control.dyn
nx_trajs_fulv/TRAJ29/columbus.par
nx_trajs_fulv/TRAJ29/sh.inp
nx_trajs_fulv/TRAJ29/RESULTS/
nx_trajs_fulv/TRAJ29/RESULTS/sh.out
nx_trajs_fulv/TRAJ29/RESULTS/tprob
nx_trajs_fulv/TRAJ29/RESULTS/dyn.out
nx_trajs_fulv/TRAJ29/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ29/RESULTS/report.ci
nx_trajs_fulv/TRAJ29/RESULTS/nx.log
nx_trajs_fulv/TRAJ29/RESULTS/properties
nx_trajs_fulv/TRAJ29/RESULTS/intec
nx_trajs_fulv/TRAJ29/RESULTS/en.dat
nx_trajs_fulv/TRAJ29/veloc
nx_trajs_fulv/TRAJ30/
nx_trajs_fulv/TRAJ30/jiri.inp
nx_trajs_fulv/TRAJ30/geom
nx_trajs_fulv/TRAJ30/control.dyn
nx_trajs_fulv/TRAJ30/columbus.par
nx_trajs_fulv/TRAJ30/sh.inp
nx_trajs_fulv/TRAJ30/RESULTS/
nx_trajs_fulv/TRAJ30/RESULTS/sh.out
nx_trajs_fulv/TRAJ30/RESULTS/tprob
nx_trajs_fulv/TRAJ30/RESULTS/dyn.out
nx_trajs_fulv/TRAJ30/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ30/RESULTS/report.ci
nx_trajs_fulv/TRAJ30/RESULTS/nx.log
nx_trajs_fulv/TRAJ30/RESULTS/properties
nx_trajs_fulv/TRAJ30/RESULTS/intec
nx_trajs_fulv/TRAJ30/RESULTS/en.dat
nx_trajs_fulv/TRAJ30/veloc
nx_trajs_fulv/TRAJ31/
nx_trajs_fulv/TRAJ31/jiri.inp
nx_trajs_fulv/TRAJ31/geom
nx_trajs_fulv/TRAJ31/control.dyn
nx_trajs_fulv/TRAJ31/columbus.par
nx_trajs_fulv/TRAJ31/sh.inp
nx_trajs_fulv/TRAJ31/RESULTS/
nx_trajs_fulv/TRAJ31/RESULTS/sh.out
nx_trajs_fulv/TRAJ31/RESULTS/tprob
nx_trajs_fulv/TRAJ31/RESULTS/dyn.out
nx_trajs_fulv/TRAJ31/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ31/RESULTS/report.ci
nx_trajs_fulv/TRAJ31/RESULTS/nx.log
nx_trajs_fulv/TRAJ31/RESULTS/properties
nx_trajs_fulv/TRAJ31/RESULTS/intec
nx_trajs_fulv/TRAJ31/RESULTS/en.dat
nx_trajs_fulv/TRAJ31/veloc
nx_trajs_fulv/TRAJ32/
nx_trajs_fulv/TRAJ32/jiri.inp
nx_trajs_fulv/TRAJ32/geom
nx_trajs_fulv/TRAJ32/control.dyn
nx_trajs_fulv/TRAJ32/columbus.par
nx_trajs_fulv/TRAJ32/sh.inp
nx_trajs_fulv/TRAJ32/RESULTS/
nx_trajs_fulv/TRAJ32/RESULTS/sh.out
nx_trajs_fulv/TRAJ32/RESULTS/tprob
nx_trajs_fulv/TRAJ32/RESULTS/dyn.out
nx_trajs_fulv/TRAJ32/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ32/RESULTS/report.ci
nx_trajs_fulv/TRAJ32/RESULTS/nx.log
nx_trajs_fulv/TRAJ32/RESULTS/properties
nx_trajs_fulv/TRAJ32/RESULTS/intec
nx_trajs_fulv/TRAJ32/RESULTS/en.dat
nx_trajs_fulv/TRAJ32/veloc
nx_trajs_fulv/TRAJ33/
nx_trajs_fulv/TRAJ33/jiri.inp
nx_trajs_fulv/TRAJ33/geom
nx_trajs_fulv/TRAJ33/control.dyn
nx_trajs_fulv/TRAJ33/columbus.par
nx_trajs_fulv/TRAJ33/sh.inp
nx_trajs_fulv/TRAJ33/RESULTS/
nx_trajs_fulv/TRAJ33/RESULTS/sh.out
nx_trajs_fulv/TRAJ33/RESULTS/tprob
nx_trajs_fulv/TRAJ33/RESULTS/dyn.out
nx_trajs_fulv/TRAJ33/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ33/RESULTS/report.ci
nx_trajs_fulv/TRAJ33/RESULTS/nx.log
nx_trajs_fulv/TRAJ33/RESULTS/properties
nx_trajs_fulv/TRAJ33/RESULTS/intec
nx_trajs_fulv/TRAJ33/RESULTS/en.dat
nx_trajs_fulv/TRAJ33/veloc
nx_trajs_fulv/TRAJ34/
nx_trajs_fulv/TRAJ34/jiri.inp
nx_trajs_fulv/TRAJ34/geom
nx_trajs_fulv/TRAJ34/control.dyn
nx_trajs_fulv/TRAJ34/columbus.par
nx_trajs_fulv/TRAJ34/sh.inp
nx_trajs_fulv/TRAJ34/RESULTS/
nx_trajs_fulv/TRAJ34/RESULTS/sh.out
nx_trajs_fulv/TRAJ34/RESULTS/tprob
nx_trajs_fulv/TRAJ34/RESULTS/dyn.out
nx_trajs_fulv/TRAJ34/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ34/RESULTS/report.ci
nx_trajs_fulv/TRAJ34/RESULTS/nx.log
nx_trajs_fulv/TRAJ34/RESULTS/properties
nx_trajs_fulv/TRAJ34/RESULTS/intec
nx_trajs_fulv/TRAJ34/RESULTS/en.dat
nx_trajs_fulv/TRAJ34/veloc
nx_trajs_fulv/TRAJ35/
nx_trajs_fulv/TRAJ35/jiri.inp
nx_trajs_fulv/TRAJ35/geom
nx_trajs_fulv/TRAJ35/control.dyn
nx_trajs_fulv/TRAJ35/columbus.par
nx_trajs_fulv/TRAJ35/sh.inp
nx_trajs_fulv/TRAJ35/RESULTS/
nx_trajs_fulv/TRAJ35/RESULTS/sh.out
nx_trajs_fulv/TRAJ35/RESULTS/tprob
nx_trajs_fulv/TRAJ35/RESULTS/dyn.out
nx_trajs_fulv/TRAJ35/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ35/RESULTS/report.ci
nx_trajs_fulv/TRAJ35/RESULTS/nx.log
nx_trajs_fulv/TRAJ35/RESULTS/properties
nx_trajs_fulv/TRAJ35/RESULTS/intec
nx_trajs_fulv/TRAJ35/RESULTS/en.dat
nx_trajs_fulv/TRAJ35/veloc
nx_trajs_fulv/TRAJ36/
nx_trajs_fulv/TRAJ36/jiri.inp
nx_trajs_fulv/TRAJ36/geom
nx_trajs_fulv/TRAJ36/control.dyn
nx_trajs_fulv/TRAJ36/columbus.par
nx_trajs_fulv/TRAJ36/sh.inp
nx_trajs_fulv/TRAJ36/RESULTS/
nx_trajs_fulv/TRAJ36/RESULTS/sh.out
nx_trajs_fulv/TRAJ36/RESULTS/tprob
nx_trajs_fulv/TRAJ36/RESULTS/dyn.out
nx_trajs_fulv/TRAJ36/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ36/RESULTS/report.ci
nx_trajs_fulv/TRAJ36/RESULTS/nx.log
nx_trajs_fulv/TRAJ36/RESULTS/properties
nx_trajs_fulv/TRAJ36/RESULTS/intec
nx_trajs_fulv/TRAJ36/RESULTS/en.dat
nx_trajs_fulv/TRAJ36/veloc
nx_trajs_fulv/TRAJ37/
nx_trajs_fulv/TRAJ37/jiri.inp
nx_trajs_fulv/TRAJ37/geom
nx_trajs_fulv/TRAJ37/control.dyn
nx_trajs_fulv/TRAJ37/columbus.par
nx_trajs_fulv/TRAJ37/sh.inp
nx_trajs_fulv/TRAJ37/RESULTS/
nx_trajs_fulv/TRAJ37/RESULTS/sh.out
nx_trajs_fulv/TRAJ37/RESULTS/tprob
nx_trajs_fulv/TRAJ37/RESULTS/dyn.out
nx_trajs_fulv/TRAJ37/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ37/RESULTS/report.ci
nx_trajs_fulv/TRAJ37/RESULTS/nx.log
nx_trajs_fulv/TRAJ37/RESULTS/properties
nx_trajs_fulv/TRAJ37/RESULTS/intec
nx_trajs_fulv/TRAJ37/RESULTS/en.dat
nx_trajs_fulv/TRAJ37/veloc
nx_trajs_fulv/TRAJ38/
nx_trajs_fulv/TRAJ38/jiri.inp
nx_trajs_fulv/TRAJ38/geom
nx_trajs_fulv/TRAJ38/control.dyn
nx_trajs_fulv/TRAJ38/columbus.par
nx_trajs_fulv/TRAJ38/sh.inp
nx_trajs_fulv/TRAJ38/RESULTS/
nx_trajs_fulv/TRAJ38/RESULTS/sh.out
nx_trajs_fulv/TRAJ38/RESULTS/tprob
nx_trajs_fulv/TRAJ38/RESULTS/dyn.out
nx_trajs_fulv/TRAJ38/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ38/RESULTS/report.ci
nx_trajs_fulv/TRAJ38/RESULTS/nx.log
nx_trajs_fulv/TRAJ38/RESULTS/properties
nx_trajs_fulv/TRAJ38/RESULTS/intec
nx_trajs_fulv/TRAJ38/RESULTS/en.dat
nx_trajs_fulv/TRAJ38/veloc
nx_trajs_fulv/TRAJ39/
nx_trajs_fulv/TRAJ39/jiri.inp
nx_trajs_fulv/TRAJ39/geom
nx_trajs_fulv/TRAJ39/control.dyn
nx_trajs_fulv/TRAJ39/columbus.par
nx_trajs_fulv/TRAJ39/sh.inp
nx_trajs_fulv/TRAJ39/RESULTS/
nx_trajs_fulv/TRAJ39/RESULTS/sh.out
nx_trajs_fulv/TRAJ39/RESULTS/tprob
nx_trajs_fulv/TRAJ39/RESULTS/dyn.out
nx_trajs_fulv/TRAJ39/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ39/RESULTS/report.ci
nx_trajs_fulv/TRAJ39/RESULTS/nx.log
nx_trajs_fulv/TRAJ39/RESULTS/properties
nx_trajs_fulv/TRAJ39/RESULTS/intec
nx_trajs_fulv/TRAJ39/RESULTS/en.dat
nx_trajs_fulv/TRAJ39/veloc
nx_trajs_fulv/TRAJ40/
nx_trajs_fulv/TRAJ40/jiri.inp
nx_trajs_fulv/TRAJ40/geom
nx_trajs_fulv/TRAJ40/control.dyn
nx_trajs_fulv/TRAJ40/columbus.par
nx_trajs_fulv/TRAJ40/sh.inp
nx_trajs_fulv/TRAJ40/RESULTS/
nx_trajs_fulv/TRAJ40/RESULTS/sh.out
nx_trajs_fulv/TRAJ40/RESULTS/tprob
nx_trajs_fulv/TRAJ40/RESULTS/dyn.out
nx_trajs_fulv/TRAJ40/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ40/RESULTS/report.ci
nx_trajs_fulv/TRAJ40/RESULTS/nx.log
nx_trajs_fulv/TRAJ40/RESULTS/properties
nx_trajs_fulv/TRAJ40/RESULTS/intec
nx_trajs_fulv/TRAJ40/RESULTS/en.dat
nx_trajs_fulv/TRAJ40/veloc
nx_trajs_fulv/TRAJ50/
nx_trajs_fulv/TRAJ50/jiri.inp
nx_trajs_fulv/TRAJ50/geom
nx_trajs_fulv/TRAJ50/control.dyn
nx_trajs_fulv/TRAJ50/columbus.par
nx_trajs_fulv/TRAJ50/sh.inp
nx_trajs_fulv/TRAJ50/RESULTS/
nx_trajs_fulv/TRAJ50/RESULTS/sh.out
nx_trajs_fulv/TRAJ50/RESULTS/tprob
nx_trajs_fulv/TRAJ50/RESULTS/dyn.out
nx_trajs_fulv/TRAJ50/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ50/RESULTS/report.ci
nx_trajs_fulv/TRAJ50/RESULTS/nx.log
nx_trajs_fulv/TRAJ50/RESULTS/properties
nx_trajs_fulv/TRAJ50/RESULTS/intec
nx_trajs_fulv/TRAJ50/RESULTS/en.dat
nx_trajs_fulv/TRAJ50/veloc
nx_trajs_fulv/TRAJ43/
nx_trajs_fulv/TRAJ43/jiri.inp
nx_trajs_fulv/TRAJ43/geom
nx_trajs_fulv/TRAJ43/control.dyn
nx_trajs_fulv/TRAJ43/columbus.par
nx_trajs_fulv/TRAJ43/sh.inp
nx_trajs_fulv/TRAJ43/RESULTS/
nx_trajs_fulv/TRAJ43/RESULTS/sh.out
nx_trajs_fulv/TRAJ43/RESULTS/tprob
nx_trajs_fulv/TRAJ43/RESULTS/dyn.out
nx_trajs_fulv/TRAJ43/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ43/RESULTS/report.ci
nx_trajs_fulv/TRAJ43/RESULTS/nx.log
nx_trajs_fulv/TRAJ43/RESULTS/properties
nx_trajs_fulv/TRAJ43/RESULTS/intec
nx_trajs_fulv/TRAJ43/RESULTS/en.dat
nx_trajs_fulv/TRAJ43/veloc
nx_trajs_fulv/TRAJ44/
nx_trajs_fulv/TRAJ44/jiri.inp
nx_trajs_fulv/TRAJ44/geom
nx_trajs_fulv/TRAJ44/control.dyn
nx_trajs_fulv/TRAJ44/columbus.par
nx_trajs_fulv/TRAJ44/sh.inp
nx_trajs_fulv/TRAJ44/RESULTS/
nx_trajs_fulv/TRAJ44/RESULTS/sh.out
nx_trajs_fulv/TRAJ44/RESULTS/tprob
nx_trajs_fulv/TRAJ44/RESULTS/dyn.out
nx_trajs_fulv/TRAJ44/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ44/RESULTS/report.ci
nx_trajs_fulv/TRAJ44/RESULTS/nx.log
nx_trajs_fulv/TRAJ44/RESULTS/properties
nx_trajs_fulv/TRAJ44/RESULTS/intec
nx_trajs_fulv/TRAJ44/RESULTS/en.dat
nx_trajs_fulv/TRAJ44/veloc
nx_trajs_fulv/TRAJ45/
nx_trajs_fulv/TRAJ45/jiri.inp
nx_trajs_fulv/TRAJ45/geom
nx_trajs_fulv/TRAJ45/control.dyn
nx_trajs_fulv/TRAJ45/columbus.par
nx_trajs_fulv/TRAJ45/sh.inp
nx_trajs_fulv/TRAJ45/RESULTS/
nx_trajs_fulv/TRAJ45/RESULTS/sh.out
nx_trajs_fulv/TRAJ45/RESULTS/tprob
nx_trajs_fulv/TRAJ45/RESULTS/dyn.out
nx_trajs_fulv/TRAJ45/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ45/RESULTS/report.ci
nx_trajs_fulv/TRAJ45/RESULTS/nx.log
nx_trajs_fulv/TRAJ45/RESULTS/properties
nx_trajs_fulv/TRAJ45/RESULTS/intec
nx_trajs_fulv/TRAJ45/RESULTS/en.dat
nx_trajs_fulv/TRAJ45/veloc
nx_trajs_fulv/TRAJ47/
nx_trajs_fulv/TRAJ47/jiri.inp
nx_trajs_fulv/TRAJ47/geom
nx_trajs_fulv/TRAJ47/control.dyn
nx_trajs_fulv/TRAJ47/columbus.par
nx_trajs_fulv/TRAJ47/sh.inp
nx_trajs_fulv/TRAJ47/RESULTS/
nx_trajs_fulv/TRAJ47/RESULTS/sh.out
nx_trajs_fulv/TRAJ47/RESULTS/tprob
nx_trajs_fulv/TRAJ47/RESULTS/dyn.out
nx_trajs_fulv/TRAJ47/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ47/RESULTS/report.ci
nx_trajs_fulv/TRAJ47/RESULTS/nx.log
nx_trajs_fulv/TRAJ47/RESULTS/properties
nx_trajs_fulv/TRAJ47/RESULTS/intec
nx_trajs_fulv/TRAJ47/RESULTS/en.dat
nx_trajs_fulv/TRAJ47/veloc
nx_trajs_fulv/TRAJ48/
nx_trajs_fulv/TRAJ48/jiri.inp
nx_trajs_fulv/TRAJ48/geom
nx_trajs_fulv/TRAJ48/control.dyn
nx_trajs_fulv/TRAJ48/columbus.par
nx_trajs_fulv/TRAJ48/sh.inp
nx_trajs_fulv/TRAJ48/RESULTS/
nx_trajs_fulv/TRAJ48/RESULTS/sh.out
nx_trajs_fulv/TRAJ48/RESULTS/tprob
nx_trajs_fulv/TRAJ48/RESULTS/dyn.out
nx_trajs_fulv/TRAJ48/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ48/RESULTS/report.ci
nx_trajs_fulv/TRAJ48/RESULTS/nx.log
nx_trajs_fulv/TRAJ48/RESULTS/properties
nx_trajs_fulv/TRAJ48/RESULTS/intec
nx_trajs_fulv/TRAJ48/RESULTS/en.dat
nx_trajs_fulv/TRAJ48/veloc
nx_trajs_fulv/TRAJ49/
nx_trajs_fulv/TRAJ49/jiri.inp
nx_trajs_fulv/TRAJ49/geom
nx_trajs_fulv/TRAJ49/control.dyn
nx_trajs_fulv/TRAJ49/columbus.par
nx_trajs_fulv/TRAJ49/sh.inp
nx_trajs_fulv/TRAJ49/RESULTS/
nx_trajs_fulv/TRAJ49/RESULTS/sh.out
nx_trajs_fulv/TRAJ49/RESULTS/tprob
nx_trajs_fulv/TRAJ49/RESULTS/dyn.out
nx_trajs_fulv/TRAJ49/RESULTS/typeofdyn.log
nx_trajs_fulv/TRAJ49/RESULTS/report.ci
nx_trajs_fulv/TRAJ49/RESULTS/nx.log
nx_trajs_fulv/TRAJ49/RESULTS/properties
nx_trajs_fulv/TRAJ49/RESULTS/intec
nx_trajs_fulv/TRAJ49/RESULTS/en.dat
nx_trajs_fulv/TRAJ49/veloc
--2024-11-12 18:24:43--  https://github.com/maxjr82/smlqc_ulamdyn/raw/main/nx_trajs_fulv.tgz
Resolving github.com (github.com)... 140.82.114.3
Connecting to github.com (github.com)|140.82.114.3|:443... connected.
HTTP request sent, awaiting response... 302 Found
Location: https://raw.githubusercontent.com/maxjr82/smlqc_ulamdyn/main/nx_trajs_fulv.tgz [following]
--2024-11-12 18:24:44--  https://raw.githubusercontent.com/maxjr82/smlqc_ulamdyn/main/nx_trajs_fulv.tgz
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.110.133, 185.199.109.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 56795768 (54M) [application/octet-stream]
Saving to: ‘nx_trajs_fulv.tgz’

     0K .......... .......... .......... .......... ..........  0% 3.38M 16s
    50K .......... .......... .......... .......... ..........  0% 14.5M 10s
   100K .......... .......... .......... .......... ..........  0% 4.64M 10s
   150K .......... .......... .......... .......... ..........  0%  229M 8s
   200K .......... .......... .......... .......... ..........  0% 10.8M 7s
   250K .......... .......... .......... .......... ..........  0%  265M 6s
   300K .......... .......... .......... .......... ..........  0%  285M 5s
   350K .......... .......... .......... .......... ..........  0%  275M 5s
   400K .......... .......... .......... .......... ..........  0% 18.2M 4s
   450K .......... .......... .......... .......... ..........  0% 53.0M 4s
   500K .......... .......... .......... .......... ..........  0% 14.5M 4s
   550K .......... .......... .......... .......... ..........  1% 65.8M 4s
   600K .......... .......... .......... .......... ..........  1%  180M 4s
   650K .......... .......... .......... .......... ..........  1%  222M 3s
   700K .......... .......... .......... .......... ..........  1% 70.6M 3s
   750K .......... .......... .......... .......... ..........  1% 50.3M 3s
   800K .......... .......... .......... .......... ..........  1% 43.2M 3s
   850K .......... .......... .......... .......... ..........  1% 42.8M 3s
   900K .......... .......... .......... .......... ..........  1% 53.7M 3s
   950K .......... .......... .......... .......... ..........  1%  216M 3s
  1000K .......... .......... .......... .......... ..........  1% 35.1M 3s
  1050K .......... .......... .......... .......... ..........  1%  197M 2s
  1100K .......... .......... .......... .......... ..........  2% 78.7M 2s
  1150K .......... .......... .......... .......... ..........  2%  173M 2s
  1200K .......... .......... .......... .......... ..........  2%  180M 2s
  1250K .......... .......... .......... .......... ..........  2%  193M 2s
  1300K .......... .......... .......... .......... ..........  2%  166M 2s
  1350K .......... .......... .......... .......... ..........  2%  171M 2s
  1400K .......... .......... .......... .......... ..........  2%  160M 2s
  1450K .......... .......... .......... .......... ..........  2%  158M 2s
  1500K .......... .......... .......... .......... ..........  2%  171M 2s
  1550K .......... .......... .......... .......... ..........  2%  185M 2s
  1600K .......... .......... .......... .......... ..........  2% 72.3M 2s
  1650K .......... .......... .......... .......... ..........  3% 5.37M 2s
  1700K .......... .......... .......... .......... ..........  3% 22.7M 2s
  1750K .......... .......... .......... .......... ..........  3% 50.6M 2s
  1800K .......... .......... .......... .......... ..........  3% 12.9M 2s
  1850K .......... .......... .......... .......... ..........  3% 31.9M 2s
  1900K .......... .......... .......... .......... ..........  3% 34.3M 2s
  1950K .......... .......... .......... .......... ..........  3% 51.5M 2s
  2000K .......... .......... .......... .......... ..........  3% 54.1M 2s
  2050K .......... .......... .......... .......... ..........  3% 49.6M 2s
  2100K .......... .......... .......... .......... ..........  3% 47.8M 2s
  2150K .......... .......... .......... .......... ..........  3% 54.4M 2s
  2200K .......... .......... .......... .......... ..........  4% 42.3M 2s
  2250K .......... .......... .......... .......... ..........  4% 39.3M 2s
  2300K .......... .......... .......... .......... ..........  4% 43.8M 2s
  2350K .......... .......... .......... .......... ..........  4% 51.4M 2s
  2400K .......... .......... .......... .......... ..........  4% 52.9M 2s
  2450K .......... .......... .......... .......... ..........  4% 51.5M 2s
  2500K .......... .......... .......... .......... ..........  4% 57.1M 2s
  2550K .......... .......... .......... .......... ..........  4%  170M 2s
  2600K .......... .......... .......... .......... ..........  4%  154M 2s
  2650K .......... .......... .......... .......... ..........  4%  192M 2s
  2700K .......... .......... .......... .......... ..........  4%  170M 2s
  2750K .......... .......... .......... .......... ..........  5%  238M 2s
  2800K .......... .......... .......... .......... ..........  5%  232M 2s
  2850K .......... .......... .......... .......... ..........  5%  223M 2s
  2900K .......... .......... .......... .......... ..........  5%  154M 2s
  2950K .......... .......... .......... .......... ..........  5%  233M 1s
  3000K .......... .......... .......... .......... ..........  5%  233M 1s
  3050K .......... .......... .......... .......... ..........  5%  209M 1s
  3100K .......... .......... .......... .......... ..........  5%  164M 1s
  3150K .......... .......... .......... .......... ..........  5%  232M 1s
  3200K .......... .......... .......... .......... ..........  5%  254M 1s
  3250K .......... .......... .......... .......... ..........  5%  275M 1s
  3300K .......... .......... .......... .......... ..........  6%  211M 1s
  3350K .......... .......... .......... .......... ..........  6%  278M 1s
  3400K .......... .......... .......... .......... ..........  6%  265M 1s
  3450K .......... .......... .......... .......... ..........  6%  250M 1s
  3500K .......... .......... .......... .......... ..........  6%  227M 1s
  3550K .......... .......... .......... .......... ..........  6% 56.1M 1s
  3600K .......... .......... .......... .......... ..........  6% 55.8M 1s
  3650K .......... .......... .......... .......... ..........  6% 55.6M 1s
  3700K .......... .......... .......... .......... ..........  6% 36.8M 1s
  3750K .......... .......... .......... .......... ..........  6% 47.4M 1s
  3800K .......... .......... .......... .......... ..........  6% 46.2M 1s
  3850K .......... .......... .......... .......... ..........  7% 50.1M 1s
  3900K .......... .......... .......... .......... ..........  7% 44.6M 1s
  3950K .......... .......... .......... .......... ..........  7% 52.8M 1s
  4000K .......... .......... .......... .......... ..........  7% 51.3M 1s
  4050K .......... .......... .......... .......... ..........  7% 35.6M 1s
  4100K .......... .......... .......... .......... ..........  7% 25.4M 1s
  4150K .......... .......... .......... .......... ..........  7% 30.8M 1s
  4200K .......... .......... .......... .......... ..........  7% 1.95M 2s
  4250K .......... .......... .......... .......... ..........  7% 6.37M 2s
  4300K .......... .......... .......... .......... ..........  7% 43.7M 2s
  4350K .......... .......... .......... .......... ..........  7% 50.3M 2s
  4400K .......... .......... .......... .......... ..........  8% 53.1M 2s
  4450K .......... .......... .......... .......... ..........  8% 53.1M 2s
  4500K .......... .......... .......... .......... ..........  8% 47.7M 2s
  4550K .......... .......... .......... .......... ..........  8% 57.6M 2s
  4600K .......... .......... .......... .......... ..........  8% 53.8M 2s
  4650K .......... .......... .......... .......... ..........  8% 95.0M 2s
  4700K .......... .......... .......... .......... ..........  8% 58.2M 2s
  4750K .......... .......... .......... .......... ..........  8%  145M 2s
  4800K .......... .......... .......... .......... ..........  8% 51.3M 2s
  4850K .......... .......... .......... .......... ..........  8%  222M 1s
  4900K .......... .......... .......... .......... ..........  8%  235M 1s
  4950K .......... .......... .......... .......... ..........  9%  254M 1s
  5000K .......... .......... .......... .......... ..........  9%  231M 1s
  5050K .......... .......... .......... .......... ..........  9%  278M 1s
  5100K .......... .......... .......... .......... ..........  9% 70.5M 1s
  5150K .......... .......... .......... .......... ..........  9% 56.8M 1s
  5200K .......... .......... .......... .......... ..........  9% 58.9M 1s
  5250K .......... .......... .......... .......... ..........  9% 57.2M 1s
  5300K .......... .......... .......... .......... ..........  9% 49.2M 1s
  5350K .......... .......... .......... .......... ..........  9% 56.3M 1s
  5400K .......... .......... .......... .......... ..........  9% 63.3M 1s
  5450K .......... .......... .......... .......... ..........  9%  115M 1s
  5500K .......... .......... .......... .......... .......... 10%  182M 1s
  5550K .......... .......... .......... .......... .......... 10%  217M 1s
  5600K .......... .......... .......... .......... .......... 10%  248M 1s
  5650K .......... .......... .......... .......... .......... 10% 62.2M 1s
  5700K .......... .......... .......... .......... .......... 10% 45.5M 1s
  5750K .......... .......... .......... .......... .......... 10% 54.4M 1s
  5800K .......... .......... .......... .......... .......... 10% 53.1M 1s
  5850K .......... .......... .......... .......... .......... 10% 46.9M 1s
  5900K .......... .......... .......... .......... .......... 10% 54.3M 1s
  5950K .......... .......... .......... .......... .......... 10% 47.7M 1s
  6000K .......... .......... .......... .......... .......... 10% 49.1M 1s
  6050K .......... .......... .......... .......... .......... 10%  164M 1s
  6100K .......... .......... .......... .......... .......... 11%  162M 1s
  6150K .......... .......... .......... .......... .......... 11%  185M 1s
  6200K .......... .......... .......... .......... .......... 11%  211M 1s
  6250K .......... .......... .......... .......... .......... 11%  247M 1s
  6300K .......... .......... .......... .......... .......... 11% 71.9M 1s
  6350K .......... .......... .......... .......... .......... 11% 66.2M 1s
  6400K .......... .......... .......... .......... .......... 11% 53.3M 1s
  6450K .......... .......... .......... .......... .......... 11% 58.8M 1s
  6500K .......... .......... .......... .......... .......... 11% 49.9M 1s
  6550K .......... .......... .......... .......... .......... 11% 56.1M 1s
  6600K .......... .......... .......... .......... .......... 11% 48.2M 1s
  6650K .......... .......... .......... .......... .......... 12% 44.6M 1s
  6700K .......... .......... .......... .......... .......... 12% 43.4M 1s
  6750K .......... .......... .......... .......... .......... 12% 46.1M 1s
  6800K .......... .......... .......... .......... .......... 12%  178M 1s
  6850K .......... .......... .......... .......... .......... 12%  234M 1s
  6900K .......... .......... .......... .......... .......... 12%  255M 1s
  6950K .......... .......... .......... .......... .......... 12%  197M 1s
  7000K .......... .......... .......... .......... .......... 12% 55.3M 1s
  7050K .......... .......... .......... .......... .......... 12% 54.3M 1s
  7100K .......... .......... .......... .......... .......... 12% 37.2M 1s
  7150K .......... .......... .......... .......... .......... 12% 51.8M 1s
  7200K .......... .......... .......... .......... .......... 13% 48.0M 1s
  7250K .......... .......... .......... .......... .......... 13% 45.2M 1s
  7300K .......... .......... .......... .......... .......... 13% 60.9M 1s
  7350K .......... .......... .......... .......... .......... 13%  215M 1s
  7400K .......... .......... .......... .......... .......... 13%  245M 1s
  7450K .......... .......... .......... .......... .......... 13%  211M 1s
  7500K .......... .......... .......... .......... .......... 13%  272M 1s
  7550K .......... .......... .......... .......... .......... 13%  210M 1s
  7600K .......... .......... .......... .......... .......... 13%  228M 1s
  7650K .......... .......... .......... .......... .......... 13%  248M 1s
  7700K .......... .......... .......... .......... .......... 13%  239M 1s
  7750K .......... .......... .......... .......... .......... 14%  180M 1s
  7800K .......... .......... .......... .......... .......... 14%  153M 1s
  7850K .......... .......... .......... .......... .......... 14%  168M 1s
  7900K .......... .......... .......... .......... .......... 14%  252M 1s
  7950K .......... .......... .......... .......... .......... 14%  249M 1s
  8000K .......... .......... .......... .......... .......... 14%  235M 1s
  8050K .......... .......... .......... .......... .......... 14%  174M 1s
  8100K .......... .......... .......... .......... .......... 14%  106M 1s
  8150K .......... .......... .......... .......... .......... 14% 53.8M 1s
  8200K .......... .......... .......... .......... .......... 14% 48.4M 1s
  8250K .......... .......... .......... .......... .......... 14% 44.8M 1s
  8300K .......... .......... .......... .......... .......... 15% 55.3M 1s
  8350K .......... .......... .......... .......... .......... 15% 53.9M 1s
  8400K .......... .......... .......... .......... .......... 15% 49.4M 1s
  8450K .......... .......... .......... .......... .......... 15% 37.3M 1s
  8500K .......... .......... .......... .......... .......... 15% 44.1M 1s
  8550K .......... .......... .......... .......... .......... 15% 41.7M 1s
  8600K .......... .......... .......... .......... .......... 15% 45.6M 1s
  8650K .......... .......... .......... .......... .......... 15% 50.8M 1s
  8700K .......... .......... .......... .......... .......... 15% 53.4M 1s
  8750K .......... .......... .......... .......... .......... 15% 44.0M 1s
  8800K .......... .......... .......... .......... .......... 15% 49.5M 1s
  8850K .......... .......... .......... .......... .......... 16% 56.3M 1s
  8900K .......... .......... .......... .......... .......... 16% 50.7M 1s
  8950K .......... .......... .......... .......... .......... 16% 5.86M 1s
  9000K .......... .......... .......... .......... .......... 16% 42.7M 1s
  9050K .......... .......... .......... .......... .......... 16% 56.6M 1s
  9100K .......... .......... .......... .......... .......... 16% 54.2M 1s
  9150K .......... .......... .......... .......... .......... 16% 62.8M 1s
  9200K .......... .......... .......... .......... .......... 16%  227M 1s
  9250K .......... .......... .......... .......... .......... 16%  216M 1s
  9300K .......... .......... .......... .......... .......... 16% 52.6M 1s
  9350K .......... .......... .......... .......... .......... 16% 56.0M 1s
  9400K .......... .......... .......... .......... .......... 17% 55.2M 1s
  9450K .......... .......... .......... .......... .......... 17%  133M 1s
  9500K .......... .......... .......... .......... .......... 17%  161M 1s
  9550K .......... .......... .......... .......... .......... 17%  233M 1s
  9600K .......... .......... .......... .......... .......... 17%  248M 1s
  9650K .......... .......... .......... .......... .......... 17%  249M 1s
  9700K .......... .......... .......... .......... .......... 17%  214M 1s
  9750K .......... .......... .......... .......... .......... 17%  251M 1s
  9800K .......... .......... .......... .......... .......... 17%  213M 1s
  9850K .......... .......... .......... .......... .......... 17%  250M 1s
  9900K .......... .......... .......... .......... .......... 17%  206M 1s
  9950K .......... .......... .......... .......... .......... 18%  259M 1s
 10000K .......... .......... .......... .......... .......... 18%  146M 1s
 10050K .......... .......... .......... .......... .......... 18% 35.8M 1s
 10100K .......... .......... .......... .......... .......... 18% 51.9M 1s
 10150K .......... .......... .......... .......... .......... 18% 6.22M 1s
 10200K .......... .......... .......... .......... .......... 18% 55.1M 1s
 10250K .......... .......... .......... .......... .......... 18% 46.1M 1s
 10300K .......... .......... .......... .......... .......... 18% 48.5M 1s
 10350K .......... .......... .......... .......... .......... 18% 46.3M 1s
 10400K .......... .......... .......... .......... .......... 18% 53.0M 1s
 10450K .......... .......... .......... .......... .......... 18% 52.6M 1s
 10500K .......... .......... .......... .......... .......... 19% 53.1M 1s
 10550K .......... .......... .......... .......... .......... 19% 38.1M 1s
 10600K .......... .......... .......... .......... .......... 19% 49.1M 1s
 10650K .......... .......... .......... .......... .......... 19% 48.7M 1s
 10700K .......... .......... .......... .......... .......... 19% 55.8M 1s
 10750K .......... .......... .......... .......... .......... 19% 85.3M 1s
 10800K .......... .......... .......... .......... .......... 19%  228M 1s
 10850K .......... .......... .......... .......... .......... 19%  249M 1s
 10900K .......... .......... .......... .......... .......... 19%  206M 1s
 10950K .......... .......... .......... .......... .......... 19%  201M 1s
 11000K .......... .......... .......... .......... .......... 19%  220M 1s
 11050K .......... .......... .......... .......... .......... 20%  225M 1s
 11100K .......... .......... .......... .......... .......... 20%  214M 1s
 11150K .......... .......... .......... .......... .......... 20%  237M 1s
 11200K .......... .......... .......... .......... .......... 20%  259M 1s
 11250K .......... .......... .......... .......... .......... 20% 7.61M 1s
 11300K .......... .......... .......... .......... .......... 20% 38.0M 1s
 11350K .......... .......... .......... .......... .......... 20% 54.1M 1s
 11400K .......... .......... .......... .......... .......... 20% 45.5M 1s
 11450K .......... .......... .......... .......... .......... 20% 45.2M 1s
 11500K .......... .......... .......... .......... .......... 20% 52.9M 1s
 11550K .......... .......... .......... .......... .......... 20% 54.1M 1s
 11600K .......... .......... .......... .......... .......... 21% 55.2M 1s
 11650K .......... .......... .......... .......... .......... 21% 49.2M 1s
 11700K .......... .......... .......... .......... .......... 21% 42.9M 1s
 11750K .......... .......... .......... .......... .......... 21% 55.4M 1s
 11800K .......... .......... .......... .......... .......... 21% 49.8M 1s
 11850K .......... .......... .......... .......... .......... 21% 55.8M 1s
 11900K .......... .......... .......... .......... .......... 21%  150M 1s
 11950K .......... .......... .......... .......... .......... 21%  143M 1s
 12000K .......... .......... .......... .......... .......... 21% 12.4M 1s
 12050K .......... .......... .......... .......... .......... 21% 52.1M 1s
 12100K .......... .......... .......... .......... .......... 21% 42.0M 1s
 12150K .......... .......... .......... .......... .......... 21% 54.3M 1s
 12200K .......... .......... .......... .......... .......... 22% 44.1M 1s
 12250K .......... .......... .......... .......... .......... 22%  151M 1s
 12300K .......... .......... .......... .......... .......... 22%  255M 1s
 12350K .......... .......... .......... .......... .......... 22%  257M 1s
 12400K .......... .......... .......... .......... .......... 22%  202M 1s
 12450K .......... .......... .......... .......... .......... 22%  239M 1s
 12500K .......... .......... .......... .......... .......... 22%  219M 1s
 12550K .......... .......... .......... .......... .......... 22%  246M 1s
 12600K .......... .......... .......... .......... .......... 22%  206M 1s
 12650K .......... .......... .......... .......... .......... 22%  251M 1s
 12700K .......... .......... .......... .......... .......... 22% 78.5M 1s
 12750K .......... .......... .......... .......... .......... 23% 51.6M 1s
 12800K .......... .......... .......... .......... .......... 23% 50.0M 1s
 12850K .......... .......... .......... .......... .......... 23% 50.6M 1s
 12900K .......... .......... .......... .......... .......... 23% 51.8M 1s
 12950K .......... .......... .......... .......... .......... 23% 39.3M 1s
 13000K .......... .......... .......... .......... .......... 23% 45.6M 1s
 13050K .......... .......... .......... .......... .......... 23% 54.9M 1s
 13100K .......... .......... .......... .......... .......... 23% 42.9M 1s
 13150K .......... .......... .......... .......... .......... 23% 54.7M 1s
 13200K .......... .......... .......... .......... .......... 23% 56.6M 1s
 13250K .......... .......... .......... .......... .......... 23%  180M 1s
 13300K .......... .......... .......... .......... .......... 24%  144M 1s
 13350K .......... .......... .......... .......... .......... 24%  216M 1s
 13400K .......... .......... .......... .......... .......... 24%  266M 1s
 13450K .......... .......... .......... .......... .......... 24%  245M 1s
 13500K .......... .......... .......... .......... .......... 24%  245M 1s
 13550K .......... .......... .......... .......... .......... 24%  230M 1s
 13600K .......... .......... .......... .......... .......... 24%  163M 1s
 13650K .......... .......... .......... .......... .......... 24%  248M 1s
 13700K .......... .......... .......... .......... .......... 24%  238M 1s
 13750K .......... .......... .......... .......... .......... 24%  202M 1s
 13800K .......... .......... .......... .......... .......... 24%  220M 1s
 13850K .......... .......... .......... .......... .......... 25%  257M 1s
 13900K .......... .......... .......... .......... .......... 25%  232M 1s
 13950K .......... .......... .......... .......... .......... 25%  100M 1s
 14000K .......... .......... .......... .......... .......... 25% 50.1M 1s
 14050K .......... .......... .......... .......... .......... 25% 40.9M 1s
 14100K .......... .......... .......... .......... .......... 25% 43.3M 1s
 14150K .......... .......... .......... .......... .......... 25% 55.0M 1s
 14200K .......... .......... .......... .......... .......... 25% 42.2M 1s
 14250K .......... .......... .......... .......... .......... 25% 43.5M 1s
 14300K .......... .......... .......... .......... .......... 25% 45.2M 1s
 14350K .......... .......... .......... .......... .......... 25% 50.7M 1s
 14400K .......... .......... .......... .......... .......... 26% 46.8M 1s
 14450K .......... .......... .......... .......... .......... 26% 40.6M 1s
 14500K .......... .......... .......... .......... .......... 26% 46.6M 1s
 14550K .......... .......... .......... .......... .......... 26% 49.7M 1s
 14600K .......... .......... .......... .......... .......... 26% 44.6M 1s
 14650K .......... .......... .......... .......... .......... 26% 54.1M 1s
 14700K .......... .......... .......... .......... .......... 26% 47.4M 1s
 14750K .......... .......... .......... .......... .......... 26% 54.2M 1s
 14800K .......... .......... .......... .......... .......... 26% 40.3M 1s
 14850K .......... .......... .......... .......... .......... 26% 53.6M 1s
 14900K .......... .......... .......... .......... .......... 26% 43.1M 1s
 14950K .......... .......... .......... .......... .......... 27% 51.9M 1s
 15000K .......... .......... .......... .......... .......... 27% 95.0M 1s
 15050K .......... .......... .......... .......... .......... 27%  207M 1s
 15100K .......... .......... .......... .......... .......... 27%  244M 1s
 15150K .......... .......... .......... .......... .......... 27%  226M 1s
 15200K .......... .......... .......... .......... .......... 27%  235M 1s
 15250K .......... .......... .......... .......... .......... 27%  227M 1s
 15300K .......... .......... .......... .......... .......... 27%  207M 1s
 15350K .......... .......... .......... .......... .......... 27%  251M 1s
 15400K .......... .......... .......... .......... .......... 27%  199M 1s
 15450K .......... .......... .......... .......... .......... 27%  268M 1s
 15500K .......... .......... .......... .......... .......... 28%  215M 1s
 15550K .......... .......... .......... .......... .......... 28%  266M 1s
 15600K .......... .......... .......... .......... .......... 28%  243M 1s
 15650K .......... .......... .......... .......... .......... 28%  230M 1s
 15700K .......... .......... .......... .......... .......... 28%  251M 1s
 15750K .......... .......... .......... .......... .......... 28%  126M 1s
 15800K .......... .......... .......... .......... .......... 28%  172M 1s
 15850K .......... .......... .......... .......... .......... 28%  218M 1s
 15900K .......... .......... .......... .......... .......... 28%  251M 1s
 15950K .......... .......... .......... .......... .......... 28%  212M 1s
 16000K .......... .......... .......... .......... .......... 28%  242M 1s
 16050K .......... .......... .......... .......... .......... 29% 71.3M 1s
 16100K .......... .......... .......... .......... .......... 29% 50.1M 1s
 16150K .......... .......... .......... .......... .......... 29% 43.4M 1s
 16200K .......... .......... .......... .......... .......... 29% 53.0M 1s
 16250K .......... .......... .......... .......... .......... 29% 41.1M 1s
 16300K .......... .......... .......... .......... .......... 29% 52.3M 1s
 16350K .......... .......... .......... .......... .......... 29% 57.0M 1s
 16400K .......... .......... .......... .......... .......... 29% 63.1M 1s
 16450K .......... .......... .......... .......... .......... 29% 55.2M 1s
 16500K .......... .......... .......... .......... .......... 29% 14.1M 1s
 16550K .......... .......... .......... .......... .......... 29% 48.5M 1s
 16600K .......... .......... .......... .......... .......... 30% 44.2M 1s
 16650K .......... .......... .......... .......... .......... 30% 45.3M 1s
 16700K .......... .......... .......... .......... .......... 30% 49.9M 1s
 16750K .......... .......... .......... .......... .......... 30% 52.4M 1s
 16800K .......... .......... .......... .......... .......... 30% 45.4M 1s
 16850K .......... .......... .......... .......... .......... 30% 53.1M 1s
 16900K .......... .......... .......... .......... .......... 30% 45.3M 1s
 16950K .......... .......... .......... .......... .......... 30% 53.5M 1s
 17000K .......... .......... .......... .......... .......... 30% 36.9M 1s
 17050K .......... .......... .......... .......... .......... 30% 52.8M 1s
 17100K .......... .......... .......... .......... .......... 30% 55.5M 1s
 17150K .......... .......... .......... .......... .......... 31% 48.7M 1s
 17200K .......... .......... .......... .......... .......... 31% 54.1M 1s
 17250K .......... .......... .......... .......... .......... 31% 54.3M 1s
 17300K .......... .......... .......... .......... .......... 31%  144M 1s
 17350K .......... .......... .......... .......... .......... 31%  130M 1s
 17400K .......... .......... .......... .......... .......... 31%  208M 1s
 17450K .......... .......... .......... .......... .......... 31%  246M 1s
 17500K .......... .......... .......... .......... .......... 31%  220M 1s
 17550K .......... .......... .......... .......... .......... 31%  263M 1s
 17600K .......... .......... .......... .......... .......... 31%  185M 1s
 17650K .......... .......... .......... .......... .......... 31%  241M 1s
 17700K .......... .......... .......... .......... .......... 32%  251M 1s
 17750K .......... .......... .......... .......... .......... 32%  177M 1s
 17800K .......... .......... .......... .......... .......... 32%  198M 1s
 17850K .......... .......... .......... .......... .......... 32%  229M 1s
 17900K .......... .......... .......... .......... .......... 32%  180M 1s
 17950K .......... .......... .......... .......... .......... 32%  214M 1s
 18000K .......... .......... .......... .......... .......... 32%  240M 1s
 18050K .......... .......... .......... .......... .......... 32%  201M 1s
 18100K .......... .......... .......... .......... .......... 32%  255M 1s
 18150K .......... .......... .......... .......... .......... 32%  149M 1s
 18200K .......... .......... .......... .......... .......... 32% 53.5M 1s
 18250K .......... .......... .......... .......... .......... 32% 46.8M 1s
 18300K .......... .......... .......... .......... .......... 33% 54.8M 1s
 18350K .......... .......... .......... .......... .......... 33% 39.7M 1s
 18400K .......... .......... .......... .......... .......... 33% 37.6M 1s
 18450K .......... .......... .......... .......... .......... 33% 40.7M 1s
 18500K .......... .......... .......... .......... .......... 33% 51.7M 1s
 18550K .......... .......... .......... .......... .......... 33% 45.5M 1s
 18600K .......... .......... .......... .......... .......... 33% 53.4M 1s
 18650K .......... .......... .......... .......... .......... 33% 51.9M 1s
 18700K .......... .......... .......... .......... .......... 33% 44.0M 1s
 18750K .......... .......... .......... .......... .......... 33% 46.0M 1s
 18800K .......... .......... .......... .......... .......... 33% 46.1M 1s
 18850K .......... .......... .......... .......... .......... 34% 49.0M 1s
 18900K .......... .......... .......... .......... .......... 34% 48.8M 1s
 18950K .......... .......... .......... .......... .......... 34% 52.1M 1s
 19000K .......... .......... .......... .......... .......... 34% 50.4M 1s
 19050K .......... .......... .......... .......... .......... 34% 38.6M 1s
 19100K .......... .......... .......... .......... .......... 34% 48.8M 1s
 19150K .......... .......... .......... .......... .......... 34% 45.5M 1s
 19200K .......... .......... .......... .......... .......... 34% 48.1M 1s
 19250K .......... .......... .......... .......... .......... 34% 61.2M 1s
 19300K .......... .......... .......... .......... .......... 34% 45.7M 1s
 19350K .......... .......... .......... .......... .......... 34% 53.1M 1s
 19400K .......... .......... .......... .......... .......... 35%  136M 1s
 19450K .......... .......... .......... .......... .......... 35%  233M 1s
 19500K .......... .......... .......... .......... .......... 35%  237M 1s
 19550K .......... .......... .......... .......... .......... 35%  172M 1s
 19600K .......... .......... .......... .......... .......... 35%  143M 1s
 19650K .......... .......... .......... .......... .......... 35%  230M 1s
 19700K .......... .......... .......... .......... .......... 35%  229M 1s
 19750K .......... .......... .......... .......... .......... 35%  223M 1s
 19800K .......... .......... .......... .......... .......... 35%  219M 1s
 19850K .......... .......... .......... .......... .......... 35%  182M 1s
 19900K .......... .......... .......... .......... .......... 35%  212M 1s
 19950K .......... .......... .......... .......... .......... 36%  200M 1s
 20000K .......... .......... .......... .......... .......... 36%  229M 1s
 20050K .......... .......... .......... .......... .......... 36%  232M 1s
 20100K .......... .......... .......... .......... .......... 36%  198M 1s
 20150K .......... .......... .......... .......... .......... 36%  207M 1s
 20200K .......... .......... .......... .......... .......... 36%  261M 1s
 20250K .......... .......... .......... .......... .......... 36%  165M 1s
 20300K .......... .......... .......... .......... .......... 36%  138M 1s
 20350K .......... .......... .......... .......... .......... 36%  190M 1s
 20400K .......... .......... .......... .......... .......... 36% 78.9M 1s
 20450K .......... .......... .......... .......... .......... 36% 45.5M 1s
 20500K .......... .......... .......... .......... .......... 37% 50.4M 1s
 20550K .......... .......... .......... .......... .......... 37% 45.6M 1s
 20600K .......... .......... .......... .......... .......... 37% 48.0M 1s
 20650K .......... .......... .......... .......... .......... 37% 6.44M 1s
 20700K .......... .......... .......... .......... .......... 37% 51.9M 1s
 20750K .......... .......... .......... .......... .......... 37% 52.9M 1s
 20800K .......... .......... .......... .......... .......... 37% 54.9M 1s
 20850K .......... .......... .......... .......... .......... 37% 45.2M 1s
 20900K .......... .......... .......... .......... .......... 37% 53.9M 1s
 20950K .......... .......... .......... .......... .......... 37% 53.6M 1s
 21000K .......... .......... .......... .......... .......... 37% 55.4M 1s
 21050K .......... .......... .......... .......... .......... 38% 45.0M 1s
 21100K .......... .......... .......... .......... .......... 38% 43.6M 1s
 21150K .......... .......... .......... .......... .......... 38% 42.3M 1s
 21200K .......... .......... .......... .......... .......... 38% 48.5M 1s
 21250K .......... .......... .......... .......... .......... 38% 45.0M 1s
 21300K .......... .......... .......... .......... .......... 38% 51.1M 1s
 21350K .......... .......... .......... .......... .......... 38% 52.3M 1s
 21400K .......... .......... .......... .......... .......... 38% 42.7M 1s
 21450K .......... .......... .......... .......... .......... 38% 42.7M 1s
 21500K .......... .......... .......... .......... .......... 38%  102M 1s
 21550K .......... .......... .......... .......... .......... 38%  215M 1s
 21600K .......... .......... .......... .......... .......... 39%  179M 1s
 21650K .......... .......... .......... .......... .......... 39%  208M 1s
 21700K .......... .......... .......... .......... .......... 39%  248M 1s
 21750K .......... .......... .......... .......... .......... 39%  245M 1s
 21800K .......... .......... .......... .......... .......... 39%  229M 1s
 21850K .......... .......... .......... .......... .......... 39%  215M 1s
 21900K .......... .......... .......... .......... .......... 39%  241M 1s
 21950K .......... .......... .......... .......... .......... 39%  243M 1s
 22000K .......... .......... .......... .......... .......... 39%  209M 1s
 22050K .......... .......... .......... .......... .......... 39%  234M 1s
 22100K .......... .......... .......... .......... .......... 39%  276M 1s
 22150K .......... .......... .......... .......... .......... 40%  256M 1s
 22200K .......... .......... .......... .......... .......... 40%  254M 1s
 22250K .......... .......... .......... .......... .......... 40%  178M 1s
 22300K .......... .......... .......... .......... .......... 40%  266M 1s
 22350K .......... .......... .......... .......... .......... 40%  261M 1s
 22400K .......... .......... .......... .......... .......... 40%  250M 1s
 22450K .......... .......... .......... .......... .......... 40%  224M 1s
 22500K .......... .......... .......... .......... .......... 40% 86.4M 1s
 22550K .......... .......... .......... .......... .......... 40% 49.6M 1s
 22600K .......... .......... .......... .......... .......... 40% 46.4M 1s
 22650K .......... .......... .......... .......... .......... 40% 53.7M 1s
 22700K .......... .......... .......... .......... .......... 41% 42.9M 1s
 22750K .......... .......... .......... .......... .......... 41% 52.3M 1s
 22800K .......... .......... .......... .......... .......... 41% 44.9M 1s
 22850K .......... .......... .......... .......... .......... 41% 42.3M 1s
 22900K .......... .......... .......... .......... .......... 41% 43.4M 1s
 22950K .......... .......... .......... .......... .......... 41% 46.7M 1s
 23000K .......... .......... .......... .......... .......... 41% 53.4M 1s
 23050K .......... .......... .......... .......... .......... 41% 50.0M 1s
 23100K .......... .......... .......... .......... .......... 41% 46.1M 1s
 23150K .......... .......... .......... .......... .......... 41% 53.4M 1s
 23200K .......... .......... .......... .......... .......... 41% 42.8M 1s
 23250K .......... .......... .......... .......... .......... 42% 37.1M 1s
 23300K .......... .......... .......... .......... .......... 42% 11.5M 1s
 23350K .......... .......... .......... .......... .......... 42% 54.8M 1s
 23400K .......... .......... .......... .......... .......... 42% 48.0M 1s
 23450K .......... .......... .......... .......... .......... 42% 49.4M 1s
 23500K .......... .......... .......... .......... .......... 42% 41.6M 1s
 23550K .......... .......... .......... .......... .......... 42% 50.9M 1s
 23600K .......... .......... .......... .......... .......... 42% 35.4M 1s
 23650K .......... .......... .......... .......... .......... 42% 50.7M 1s
 23700K .......... .......... .......... .......... .......... 42% 46.8M 1s
 23750K .......... .......... .......... .......... .......... 42%  101M 1s
 23800K .......... .......... .......... .......... .......... 43%  222M 1s
 23850K .......... .......... .......... .......... .......... 43%  273M 1s
 23900K .......... .......... .......... .......... .......... 43%  232M 1s
 23950K .......... .......... .......... .......... .......... 43% 54.3M 1s
 24000K .......... .......... .......... .......... .......... 43% 51.1M 1s
 24050K .......... .......... .......... .......... .......... 43% 43.1M 1s
 24100K .......... .......... .......... .......... .......... 43% 42.6M 1s
 24150K .......... .......... .......... .......... .......... 43%  143M 1s
 24200K .......... .......... .......... .......... .......... 43%  240M 1s
 24250K .......... .......... .......... .......... .......... 43%  228M 1s
 24300K .......... .......... .......... .......... .......... 43% 70.8M 1s
 24350K .......... .......... .......... .......... .......... 43% 58.1M 1s
 24400K .......... .......... .......... .......... .......... 44% 52.2M 1s
 24450K .......... .......... .......... .......... .......... 44% 46.7M 1s
 24500K .......... .......... .......... .......... .......... 44% 52.5M 1s
 24550K .......... .......... .......... .......... .......... 44%  212M 1s
 24600K .......... .......... .......... .......... .......... 44%  245M 1s
 24650K .......... .......... .......... .......... .......... 44%  252M 1s
 24700K .......... .......... .......... .......... .......... 44%  186M 1s
 24750K .......... .......... .......... .......... .......... 44%  246M 1s
 24800K .......... .......... .......... .......... .......... 44%  235M 1s
 24850K .......... .......... .......... .......... .......... 44%  275M 1s
 24900K .......... .......... .......... .......... .......... 44% 48.6M 1s
 24950K .......... .......... .......... .......... .......... 45% 40.3M 1s
 25000K .......... .......... .......... .......... .......... 45% 52.0M 1s
 25050K .......... .......... .......... .......... .......... 45% 53.9M 1s
 25100K .......... .......... .......... .......... .......... 45% 42.4M 1s
 25150K .......... .......... .......... .......... .......... 45% 50.1M 1s
 25200K .......... .......... .......... .......... .......... 45% 53.5M 1s
 25250K .......... .......... .......... .......... .......... 45% 36.7M 1s
 25300K .......... .......... .......... .......... .......... 45% 48.4M 1s
 25350K .......... .......... .......... .......... .......... 45% 53.3M 1s
 25400K .......... .......... .......... .......... .......... 45% 89.6M 1s
 25450K .......... .......... .......... .......... .......... 45%  219M 1s
 25500K .......... .......... .......... .......... .......... 46% 95.5M 1s
 25550K .......... .......... .......... .......... .......... 46% 54.4M 1s
 25600K .......... .......... .......... .......... .......... 46% 57.0M 1s
 25650K .......... .......... .......... .......... .......... 46%  195M 1s
 25700K .......... .......... .......... .......... .......... 46%  246M 1s
 25750K .......... .......... .......... .......... .......... 46%  259M 1s
 25800K .......... .......... .......... .......... .......... 46%  236M 1s
 25850K .......... .......... .......... .......... .......... 46% 57.9M 1s
 25900K .......... .......... .......... .......... .......... 46% 39.5M 1s
 25950K .......... .......... .......... .......... .......... 46% 39.5M 1s
 26000K .......... .......... .......... .......... .......... 46% 53.4M 1s
 26050K .......... .......... .......... .......... .......... 47% 52.9M 1s
 26100K .......... .......... .......... .......... .......... 47%  131M 1s
 26150K .......... .......... .......... .......... .......... 47%  229M 1s
 26200K .......... .......... .......... .......... .......... 47%  253M 1s
 26250K .......... .......... .......... .......... .......... 47%  118M 1s
 26300K .......... .......... .......... .......... .......... 47%  207M 1s
 26350K .......... .......... .......... .......... .......... 47%  260M 1s
 26400K .......... .......... .......... .......... .......... 47%  259M 1s
 26450K .......... .......... .......... .......... .......... 47% 69.2M 1s
 26500K .......... .......... .......... .......... .......... 47% 48.2M 1s
 26550K .......... .......... .......... .......... .......... 47% 48.9M 1s
 26600K .......... .......... .......... .......... .......... 48% 44.8M 1s
 26650K .......... .......... .......... .......... .......... 48% 46.3M 1s
 26700K .......... .......... .......... .......... .......... 48% 53.9M 1s
 26750K .......... .......... .......... .......... .......... 48% 44.3M 1s
 26800K .......... .......... .......... .......... .......... 48% 40.9M 1s
 26850K .......... .......... .......... .......... .......... 48% 47.3M 1s
 26900K .......... .......... .......... .......... .......... 48% 44.2M 1s
 26950K .......... .......... .......... .......... .......... 48%  171M 1s
 27000K .......... .......... .......... .......... .......... 48%  210M 1s
 27050K .......... .......... .......... .......... .......... 48%  249M 0s
 27100K .......... .......... .......... .......... .......... 48%  143M 0s
 27150K .......... .......... .......... .......... .......... 49%  171M 0s
 27200K .......... .......... .......... .......... .......... 49%  233M 0s
 27250K .......... .......... .......... .......... .......... 49%  270M 0s
 27300K .......... .......... .......... .......... .......... 49%  242M 0s
 27350K .......... .......... .......... .......... .......... 49%  248M 0s
 27400K .......... .......... .......... .......... .......... 49%  208M 0s
 27450K .......... .......... .......... .......... .......... 49%  247M 0s
 27500K .......... .......... .......... .......... .......... 49%  255M 0s
 27550K .......... .......... .......... .......... .......... 49% 97.3M 0s
 27600K .......... .......... .......... .......... .......... 49% 46.1M 0s
 27650K .......... .......... .......... .......... .......... 49% 52.5M 0s
 27700K .......... .......... .......... .......... .......... 50% 53.3M 0s
 27750K .......... .......... .......... .......... .......... 50% 43.0M 0s
 27800K .......... .......... .......... .......... .......... 50% 46.7M 0s
 27850K .......... .......... .......... .......... .......... 50% 47.3M 0s
 27900K .......... .......... .......... .......... .......... 50% 55.7M 0s
 27950K .......... .......... .......... .......... .......... 50% 56.6M 0s
 28000K .......... .......... .......... .......... .......... 50% 36.0M 0s
 28050K .......... .......... .......... .......... .......... 50% 51.1M 0s
 28100K .......... .......... .......... .......... .......... 50% 49.2M 0s
 28150K .......... .......... .......... .......... .......... 50% 50.3M 0s
 28200K .......... .......... .......... .......... .......... 50% 44.6M 0s
 28250K .......... .......... .......... .......... .......... 51% 52.3M 0s
 28300K .......... .......... .......... .......... .......... 51% 55.0M 0s
 28350K .......... .......... .......... .......... .......... 51% 65.9M 0s
 28400K .......... .......... .......... .......... .......... 51%  213M 0s
 28450K .......... .......... .......... .......... .......... 51%  253M 0s
 28500K .......... .......... .......... .......... .......... 51%  259M 0s
 28550K .......... .......... .......... .......... .......... 51%  253M 0s
 28600K .......... .......... .......... .......... .......... 51% 36.0M 0s
 28650K .......... .......... .......... .......... .......... 51% 43.9M 0s
 28700K .......... .......... .......... .......... .......... 51% 49.1M 0s
 28750K .......... .......... .......... .......... .......... 51% 52.0M 0s
 28800K .......... .......... .......... .......... .......... 52% 53.7M 0s
 28850K .......... .......... .......... .......... .......... 52% 86.0M 0s
 28900K .......... .......... .......... .......... .......... 52% 85.0M 0s
 28950K .......... .......... .......... .......... .......... 52% 59.8M 0s
 29000K .......... .......... .......... .......... .......... 52%  227M 0s
 29050K .......... .......... .......... .......... .......... 52%  163M 0s
 29100K .......... .......... .......... .......... .......... 52% 66.9M 0s
 29150K .......... .......... .......... .......... .......... 52% 48.0M 0s
 29200K .......... .......... .......... .......... .......... 52% 54.4M 0s
 29250K .......... .......... .......... .......... .......... 52% 54.5M 0s
 29300K .......... .......... .......... .......... .......... 52% 47.4M 0s
 29350K .......... .......... .......... .......... .......... 53%  115M 0s
 29400K .......... .......... .......... .......... .......... 53%  273M 0s
 29450K .......... .......... .......... .......... .......... 53%  239M 0s
 29500K .......... .......... .......... .......... .......... 53%  230M 0s
 29550K .......... .......... .......... .......... .......... 53%  257M 0s
 29600K .......... .......... .......... .......... .......... 53%  251M 0s
 29650K .......... .......... .......... .......... .......... 53%  249M 0s
 29700K .......... .......... .......... .......... .......... 53% 50.1M 0s
 29750K .......... .......... .......... .......... .......... 53% 39.5M 0s
 29800K .......... .......... .......... .......... .......... 53% 45.8M 0s
 29850K .......... .......... .......... .......... .......... 53% 56.0M 0s
 29900K .......... .......... .......... .......... .......... 53% 49.0M 0s
 29950K .......... .......... .......... .......... .......... 54% 52.5M 0s
 30000K .......... .......... .......... .......... .......... 54% 55.0M 0s
 30050K .......... .......... .......... .......... .......... 54% 54.7M 0s
 30100K .......... .......... .......... .......... .......... 54% 84.6M 0s
 30150K .......... .......... .......... .......... .......... 54%  225M 0s
 30200K .......... .......... .......... .......... .......... 54%  224M 0s
 30250K .......... .......... .......... .......... .......... 54%  222M 0s
 30300K .......... .......... .......... .......... .......... 54%  129M 0s
 30350K .......... .......... .......... .......... .......... 54%  145M 0s
 30400K .......... .......... .......... .......... .......... 54%  265M 0s
 30450K .......... .......... .......... .......... .......... 54% 55.9M 0s
 30500K .......... .......... .......... .......... .......... 55% 47.9M 0s
 30550K .......... .......... .......... .......... .......... 55% 54.4M 0s
 30600K .......... .......... .......... .......... .......... 55% 53.8M 0s
 30650K .......... .......... .......... .......... .......... 55% 54.1M 0s
 30700K .......... .......... .......... .......... .......... 55% 48.4M 0s
 30750K .......... .......... .......... .......... .......... 55% 57.0M 0s
 30800K .......... .......... .......... .......... .......... 55% 37.5M 0s
 30850K .......... .......... .......... .......... .......... 55% 47.7M 0s
 30900K .......... .......... .......... .......... .......... 55% 43.0M 0s
 30950K .......... .......... .......... .......... .......... 55% 57.2M 0s
 31000K .......... .......... .......... .......... .......... 55%  243M 0s
 31050K .......... .......... .......... .......... .......... 56%  221M 0s
 31100K .......... .......... .......... .......... .......... 56%  220M 0s
 31150K .......... .......... .......... .......... .......... 56%  196M 0s
 31200K .......... .......... .......... .......... .......... 56%  205M 0s
 31250K .......... .......... .......... .......... .......... 56%  133M 0s
 31300K .......... .......... .......... .......... .......... 56% 50.7M 0s
 31350K .......... .......... .......... .......... .......... 56% 53.2M 0s
 31400K .......... .......... .......... .......... .......... 56% 38.6M 0s
 31450K .......... .......... .......... .......... .......... 56% 51.4M 0s
 31500K .......... .......... .......... .......... .......... 56% 54.8M 0s
 31550K .......... .......... .......... .......... .......... 56% 51.5M 0s
 31600K .......... .......... .......... .......... .......... 57% 75.8M 0s
 31650K .......... .......... .......... .......... .......... 57%  109M 0s
 31700K .......... .......... .......... .......... .......... 57%  185M 0s
 31750K .......... .......... .......... .......... .......... 57%  257M 0s
 31800K .......... .......... .......... .......... .......... 57%  265M 0s
 31850K .......... .......... .......... .......... .......... 57% 68.1M 0s
 31900K .......... .......... .......... .......... .......... 57% 54.3M 0s
 31950K .......... .......... .......... .......... .......... 57% 48.2M 0s
 32000K .......... .......... .......... .......... .......... 57% 56.2M 0s
 32050K .......... .......... .......... .......... .......... 57% 47.6M 0s
 32100K .......... .......... .......... .......... .......... 57% 55.6M 0s
 32150K .......... .......... .......... .......... .......... 58% 49.4M 0s
 32200K .......... .......... .......... .......... .......... 58% 83.2M 0s
 32250K .......... .......... .......... .......... .......... 58% 69.1M 0s
 32300K .......... .......... .......... .......... .......... 58% 54.3M 0s
 32350K .......... .......... .......... .......... .......... 58%  159M 0s
 32400K .......... .......... .......... .......... .......... 58%  242M 0s
 32450K .......... .......... .......... .......... .......... 58% 42.7M 0s
 32500K .......... .......... .......... .......... .......... 58% 55.7M 0s
 32550K .......... .......... .......... .......... .......... 58% 58.8M 0s
 32600K .......... .......... .......... .......... .......... 58%  231M 0s
 32650K .......... .......... .......... .......... .......... 58%  208M 0s
 32700K .......... .......... .......... .......... .......... 59%  241M 0s
 32750K .......... .......... .......... .......... .......... 59%  251M 0s
 32800K .......... .......... .......... .......... .......... 59%  260M 0s
 32850K .......... .......... .......... .......... .......... 59%  219M 0s
 32900K .......... .......... .......... .......... .......... 59%  253M 0s
 32950K .......... .......... .......... .......... .......... 59%  245M 0s
 33000K .......... .......... .......... .......... .......... 59%  182M 0s
 33050K .......... .......... .......... .......... .......... 59% 73.0M 0s
 33100K .......... .......... .......... .......... .......... 59% 54.1M 0s
 33150K .......... .......... .......... .......... .......... 59% 57.1M 0s
 33200K .......... .......... .......... .......... .......... 59% 56.3M 0s
 33250K .......... .......... .......... .......... .......... 60% 40.8M 0s
 33300K .......... .......... .......... .......... .......... 60% 48.3M 0s
 33350K .......... .......... .......... .......... .......... 60% 53.9M 0s
 33400K .......... .......... .......... .......... .......... 60% 50.1M 0s
 33450K .......... .......... .......... .......... .......... 60% 37.4M 0s
 33500K .......... .......... .......... .......... .......... 60% 46.5M 0s
 33550K .......... .......... .......... .......... .......... 60% 52.8M 0s
 33600K .......... .......... .......... .......... .......... 60% 41.5M 0s
 33650K .......... .......... .......... .......... .......... 60% 54.4M 0s
 33700K .......... .......... .......... .......... .......... 60%  165M 0s
 33750K .......... .......... .......... .......... .......... 60%  240M 0s
 33800K .......... .......... .......... .......... .......... 61%  209M 0s
 33850K .......... .......... .......... .......... .......... 61%  234M 0s
 33900K .......... .......... .......... .......... .......... 61%  244M 0s
 33950K .......... .......... .......... .......... .......... 61%  199M 0s
 34000K .......... .......... .......... .......... .......... 61%  229M 0s
 34050K .......... .......... .......... .......... .......... 61%  253M 0s
 34100K .......... .......... .......... .......... .......... 61%  245M 0s
 34150K .......... .......... .......... .......... .......... 61%  208M 0s
 34200K .......... .......... .......... .......... .......... 61%  252M 0s
 34250K .......... .......... .......... .......... .......... 61%  177M 0s
 34300K .......... .......... .......... .......... .......... 61%  196M 0s
 34350K .......... .......... .......... .......... .......... 62%  219M 0s
 34400K .......... .......... .......... .......... .......... 62%  232M 0s
 34450K .......... .......... .......... .......... .......... 62%  229M 0s
 34500K .......... .......... .......... .......... .......... 62%  222M 0s
 34550K .......... .......... .......... .......... .......... 62%  204M 0s
 34600K .......... .......... .......... .......... .......... 62%  251M 0s
 34650K .......... .......... .......... .......... .......... 62%  236M 0s
 34700K .......... .......... .......... .......... .......... 62% 70.1M 0s
 34750K .......... .......... .......... .......... .......... 62% 41.0M 0s
 34800K .......... .......... .......... .......... .......... 62% 53.7M 0s
 34850K .......... .......... .......... .......... .......... 62% 51.9M 0s
 34900K .......... .......... .......... .......... .......... 63% 44.8M 0s
 34950K .......... .......... .......... .......... .......... 63% 37.1M 0s
 35000K .......... .......... .......... .......... .......... 63% 50.0M 0s
 35050K .......... .......... .......... .......... .......... 63% 55.1M 0s
 35100K .......... .......... .......... .......... .......... 63% 55.4M 0s
 35150K .......... .......... .......... .......... .......... 63% 37.7M 0s
 35200K .......... .......... .......... .......... .......... 63% 52.9M 0s
 35250K .......... .......... .......... .......... .......... 63% 52.3M 0s
 35300K .......... .......... .......... .......... .......... 63% 48.1M 0s
 35350K .......... .......... .......... .......... .......... 63% 45.3M 0s
 35400K .......... .......... .......... .......... .......... 63% 54.2M 0s
 35450K .......... .......... .......... .......... .......... 64% 13.6M 0s
 35500K .......... .......... .......... .......... .......... 64% 41.8M 0s
 35550K .......... .......... .......... .......... .......... 64% 46.7M 0s
 35600K .......... .......... .......... .......... .......... 64% 45.4M 0s
 35650K .......... .......... .......... .......... .......... 64% 53.2M 0s
 35700K .......... .......... .......... .......... .......... 64% 55.9M 0s
 35750K .......... .......... .......... .......... .......... 64% 56.6M 0s
 35800K .......... .......... .......... .......... .......... 64% 7.08M 0s
 35850K .......... .......... .......... .......... .......... 64%  240M 0s
 35900K .......... .......... .......... .......... .......... 64%  247M 0s
 35950K .......... .......... .......... .......... .......... 64%  258M 0s
 36000K .......... .......... .......... .......... .......... 64%  178M 0s
 36050K .......... .......... .......... .......... .......... 65%  243M 0s
 36100K .......... .......... .......... .......... .......... 65%  233M 0s
 36150K .......... .......... .......... .......... .......... 65%  259M 0s
 36200K .......... .......... .......... .......... .......... 65%  232M 0s
 36250K .......... .......... .......... .......... .......... 65%  210M 0s
 36300K .......... .......... .......... .......... .......... 65%  266M 0s
 36350K .......... .......... .......... .......... .......... 65%  150M 0s
 36400K .......... .......... .......... .......... .......... 65% 82.8M 0s
 36450K .......... .......... .......... .......... .......... 65% 46.5M 0s
 36500K .......... .......... .......... .......... .......... 65% 53.7M 0s
 36550K .......... .......... .......... .......... .......... 65% 54.3M 0s
 36600K .......... .......... .......... .......... .......... 66% 56.7M 0s
 36650K .......... .......... .......... .......... .......... 66% 47.3M 0s
 36700K .......... .......... .......... .......... .......... 66% 45.6M 0s
 36750K .......... .......... .......... .......... .......... 66% 51.5M 0s
 36800K .......... .......... .......... .......... .......... 66% 7.32M 0s
 36850K .......... .......... .......... .......... .......... 66% 42.5M 0s
 36900K .......... .......... .......... .......... .......... 66% 43.7M 0s
 36950K .......... .......... .......... .......... .......... 66% 53.2M 0s
 37000K .......... .......... .......... .......... .......... 66% 48.5M 0s
 37050K .......... .......... .......... .......... .......... 66% 47.0M 0s
 37100K .......... .......... .......... .......... .......... 66% 56.4M 0s
 37150K .......... .......... .......... .......... .......... 67% 56.7M 0s
 37200K .......... .......... .......... .......... .......... 67% 89.5M 0s
 37250K .......... .......... .......... .......... .......... 67%  225M 0s
 37300K .......... .......... .......... .......... .......... 67%  187M 0s
 37350K .......... .......... .......... .......... .......... 67%  235M 0s
 37400K .......... .......... .......... .......... .......... 67%  242M 0s
 37450K .......... .......... .......... .......... .......... 67%  201M 0s
 37500K .......... .......... .......... .......... .......... 67%  251M 0s
 37550K .......... .......... .......... .......... .......... 67%  191M 0s
 37600K .......... .......... .......... .......... .......... 67%  230M 0s
 37650K .......... .......... .......... .......... .......... 67%  196M 0s
 37700K .......... .......... .......... .......... .......... 68%  241M 0s
 37750K .......... .......... .......... .......... .......... 68%  245M 0s
 37800K .......... .......... .......... .......... .......... 68%  263M 0s
 37850K .......... .......... .......... .......... .......... 68% 6.05M 0s
 37900K .......... .......... .......... .......... .......... 68% 56.5M 0s
 37950K .......... .......... .......... .......... .......... 68% 45.3M 0s
 38000K .......... .......... .......... .......... .......... 68% 57.1M 0s
 38050K .......... .......... .......... .......... .......... 68% 44.0M 0s
 38100K .......... .......... .......... .......... .......... 68% 44.1M 0s
 38150K .......... .......... .......... .......... .......... 68% 47.3M 0s
 38200K .......... .......... .......... .......... .......... 68% 50.3M 0s
 38250K .......... .......... .......... .......... .......... 69% 45.4M 0s
 38300K .......... .......... .......... .......... .......... 69% 51.0M 0s
 38350K .......... .......... .......... .......... .......... 69% 56.8M 0s
 38400K .......... .......... .......... .......... .......... 69% 46.9M 0s
 38450K .......... .......... .......... .......... .......... 69% 45.7M 0s
 38500K .......... .......... .......... .......... .......... 69% 59.9M 0s
 38550K .......... .......... .......... .......... .......... 69% 48.1M 0s
 38600K .......... .......... .......... .......... .......... 69% 49.8M 0s
 38650K .......... .......... .......... .......... .......... 69% 26.1M 0s
 38700K .......... .......... .......... .......... .......... 69%  262M 0s
 38750K .......... .......... .......... .......... .......... 69% 11.1M 0s
 38800K .......... .......... .......... .......... .......... 70% 26.0M 0s
 38850K .......... .......... .......... .......... .......... 70% 38.2M 0s
 38900K .......... .......... .......... .......... .......... 70% 56.5M 0s
 38950K .......... .......... .......... .......... .......... 70%  225M 0s
 39000K .......... .......... .......... .......... .......... 70%  265M 0s
 39050K .......... .......... .......... .......... .......... 70%  236M 0s
 39100K .......... .......... .......... .......... .......... 70% 61.3M 0s
 39150K .......... .......... .......... .......... .......... 70% 11.8M 0s
 39200K .......... .......... .......... .......... .......... 70% 52.2M 0s
 39250K .......... .......... .......... .......... .......... 70% 56.2M 0s
 39300K .......... .......... .......... .......... .......... 70%  230M 0s
 39350K .......... .......... .......... .......... .......... 71%  204M 0s
 39400K .......... .......... .......... .......... .......... 71%  214M 0s
 39450K .......... .......... .......... .......... .......... 71%  254M 0s
 39500K .......... .......... .......... .......... .......... 71%  249M 0s
 39550K .......... .......... .......... .......... .......... 71%  180M 0s
 39600K .......... .......... .......... .......... .......... 71%  215M 0s
 39650K .......... .......... .......... .......... .......... 71%  235M 0s
 39700K .......... .......... .......... .......... .......... 71%  262M 0s
 39750K .......... .......... .......... .......... .......... 71%  244M 0s
 39800K .......... .......... .......... .......... .......... 71% 19.4M 0s
 39850K .......... .......... .......... .......... .......... 71% 53.0M 0s
 39900K .......... .......... .......... .......... .......... 72% 53.4M 0s
 39950K .......... .......... .......... .......... .......... 72% 48.6M 0s
 40000K .......... .......... .......... .......... .......... 72% 42.2M 0s
 40050K .......... .......... .......... .......... .......... 72% 14.1M 0s
 40100K .......... .......... .......... .......... .......... 72% 52.5M 0s
 40150K .......... .......... .......... .......... .......... 72% 43.3M 0s
 40200K .......... .......... .......... .......... .......... 72% 51.5M 0s
 40250K .......... .......... .......... .......... .......... 72% 52.2M 0s
 40300K .......... .......... .......... .......... .......... 72% 36.0M 0s
 40350K .......... .......... .......... .......... .......... 72% 18.9M 0s
 40400K .......... .......... .......... .......... .......... 72% 51.9M 0s
 40450K .......... .......... .......... .......... .......... 73% 45.6M 0s
 40500K .......... .......... .......... .......... .......... 73% 13.6M 0s
 40550K .......... .......... .......... .......... .......... 73%  207M 0s
 40600K .......... .......... .......... .......... .......... 73%  244M 0s
 40650K .......... .......... .......... .......... .......... 73%  242M 0s
 40700K .......... .......... .......... .......... .......... 73%  229M 0s
 40750K .......... .......... .......... .......... .......... 73%  207M 0s
 40800K .......... .......... .......... .......... .......... 73%  215M 0s
 40850K .......... .......... .......... .......... .......... 73%  236M 0s
 40900K .......... .......... .......... .......... .......... 73%  204M 0s
 40950K .......... .......... .......... .......... .......... 73%  250M 0s
 41000K .......... .......... .......... .......... .......... 74%  248M 0s
 41050K .......... .......... .......... .......... .......... 74%  206M 0s
 41100K .......... .......... .......... .......... .......... 74%  280M 0s
 41150K .......... .......... .......... .......... .......... 74%  255M 0s
 41200K .......... .......... .......... .......... .......... 74%  249M 0s
 41250K .......... .......... .......... .......... .......... 74%  216M 0s
 41300K .......... .......... .......... .......... .......... 74%  244M 0s
 41350K .......... .......... .......... .......... .......... 74%  168M 0s
 41400K .......... .......... .......... .......... .......... 74%  177M 0s
 41450K .......... .......... .......... .......... .......... 74%  160M 0s
 41500K .......... .......... .......... .......... .......... 74%  249M 0s
 41550K .......... .......... .......... .......... .......... 75%  241M 0s
 41600K .......... .......... .......... .......... .......... 75% 53.4M 0s
 41650K .......... .......... .......... .......... .......... 75% 48.4M 0s
 41700K .......... .......... .......... .......... .......... 75% 54.4M 0s
 41750K .......... .......... .......... .......... .......... 75% 53.8M 0s
 41800K .......... .......... .......... .......... .......... 75% 40.2M 0s
 41850K .......... .......... .......... .......... .......... 75% 44.5M 0s
 41900K .......... .......... .......... .......... .......... 75% 40.0M 0s
 41950K .......... .......... .......... .......... .......... 75% 53.4M 0s
 42000K .......... .......... .......... .......... .......... 75% 52.3M 0s
 42050K .......... .......... .......... .......... .......... 75% 45.1M 0s
 42100K .......... .......... .......... .......... .......... 75% 52.8M 0s
 42150K .......... .......... .......... .......... .......... 76% 42.1M 0s
 42200K .......... .......... .......... .......... .......... 76% 50.3M 0s
 42250K .......... .......... .......... .......... .......... 76% 37.7M 0s
 42300K .......... .......... .......... .......... .......... 76% 50.3M 0s
 42350K .......... .......... .......... .......... .......... 76% 50.8M 0s
 42400K .......... .......... .......... .......... .......... 76% 54.7M 0s
 42450K .......... .......... .......... .......... .......... 76% 49.5M 0s
 42500K .......... .......... .......... .......... .......... 76% 56.7M 0s
 42550K .......... .......... .......... .......... .......... 76% 46.1M 0s
 42600K .......... .......... .......... .......... .......... 76% 52.7M 0s
 42650K .......... .......... .......... .......... .......... 76% 41.8M 0s
 42700K .......... .......... .......... .......... .......... 77% 52.2M 0s
 42750K .......... .......... .......... .......... .......... 77%  115M 0s
 42800K .......... .......... .......... .......... .......... 77%  252M 0s
 42850K .......... .......... .......... .......... .......... 77%  203M 0s
 42900K .......... .......... .......... .......... .......... 77%  255M 0s
 42950K .......... .......... .......... .......... .......... 77%  255M 0s
 43000K .......... .......... .......... .......... .......... 77%  261M 0s
 43050K .......... .......... .......... .......... .......... 77%  214M 0s
 43100K .......... .......... .......... .......... .......... 77%  222M 0s
 43150K .......... .......... .......... .......... .......... 77%  257M 0s
 43200K .......... .......... .......... .......... .......... 77%  266M 0s
 43250K .......... .......... .......... .......... .......... 78%  208M 0s
 43300K .......... .......... .......... .......... .......... 78%  232M 0s
 43350K .......... .......... .......... .......... .......... 78%  194M 0s
 43400K .......... .......... .......... .......... .......... 78%  235M 0s
 43450K .......... .......... .......... .......... .......... 78%  210M 0s
 43500K .......... .......... .......... .......... .......... 78%  152M 0s
 43550K .......... .......... .......... .......... .......... 78%  223M 0s
 43600K .......... .......... .......... .......... .......... 78%  226M 0s
 43650K .......... .......... .......... .......... .......... 78%  249M 0s
 43700K .......... .......... .......... .......... .......... 78%  248M 0s
 43750K .......... .......... .......... .......... .......... 78% 93.2M 0s
 43800K .......... .......... .......... .......... .......... 79% 55.4M 0s
 43850K .......... .......... .......... .......... .......... 79% 39.3M 0s
 43900K .......... .......... .......... .......... .......... 79% 53.0M 0s
 43950K .......... .......... .......... .......... .......... 79% 46.8M 0s
 44000K .......... .......... .......... .......... .......... 79% 54.0M 0s
 44050K .......... .......... .......... .......... .......... 79% 39.4M 0s
 44100K .......... .......... .......... .......... .......... 79% 50.0M 0s
 44150K .......... .......... .......... .......... .......... 79% 51.4M 0s
 44200K .......... .......... .......... .......... .......... 79% 38.2M 0s
 44250K .......... .......... .......... .......... .......... 79% 51.9M 0s
 44300K .......... .......... .......... .......... .......... 79% 53.1M 0s
 44350K .......... .......... .......... .......... .......... 80% 53.2M 0s
 44400K .......... .......... .......... .......... .......... 80% 37.7M 0s
 44450K .......... .......... .......... .......... .......... 80% 54.7M 0s
 44500K .......... .......... .......... .......... .......... 80% 53.7M 0s
 44550K .......... .......... .......... .......... .......... 80% 43.8M 0s
 44600K .......... .......... .......... .......... .......... 80% 47.1M 0s
 44650K .......... .......... .......... .......... .......... 80% 54.3M 0s
 44700K .......... .......... .......... .......... .......... 80% 53.6M 0s
 44750K .......... .......... .......... .......... .......... 80% 50.9M 0s
 44800K .......... .......... .......... .......... .......... 80% 39.0M 0s
 44850K .......... .......... .......... .......... .......... 80% 56.3M 0s
 44900K .......... .......... .......... .......... .......... 81% 47.7M 0s
 44950K .......... .......... .......... .......... .......... 81% 3.84M 0s
 45000K .......... .......... .......... .......... .......... 81%  236M 0s
 45050K .......... .......... .......... .......... .......... 81%  246M 0s
 45100K .......... .......... .......... .......... .......... 81%  176M 0s
 45150K .......... .......... .......... .......... .......... 81%  247M 0s
 45200K .......... .......... .......... .......... .......... 81%  210M 0s
 45250K .......... .......... .......... .......... .......... 81%  265M 0s
 45300K .......... .......... .......... .......... .......... 81%  248M 0s
 45350K .......... .......... .......... .......... .......... 81%  195M 0s
 45400K .......... .......... .......... .......... .......... 81%  238M 0s
 45450K .......... .......... .......... .......... .......... 82%  237M 0s
 45500K .......... .......... .......... .......... .......... 82%  254M 0s
 45550K .......... .......... .......... .......... .......... 82% 9.49M 0s
 45600K .......... .......... .......... .......... .......... 82% 46.4M 0s
 45650K .......... .......... .......... .......... .......... 82% 41.2M 0s
 45700K .......... .......... .......... .......... .......... 82% 53.9M 0s
 45750K .......... .......... .......... .......... .......... 82% 44.6M 0s
 45800K .......... .......... .......... .......... .......... 82% 54.8M 0s
 45850K .......... .......... .......... .......... .......... 82% 55.5M 0s
 45900K .......... .......... .......... .......... .......... 82% 41.7M 0s
 45950K .......... .......... .......... .......... .......... 82% 34.2M 0s
 46000K .......... .......... .......... .......... .......... 83% 44.0M 0s
 46050K .......... .......... .......... .......... .......... 83% 50.8M 0s
 46100K .......... .......... .......... .......... .......... 83% 55.6M 0s
 46150K .......... .......... .......... .......... .......... 83% 46.4M 0s
 46200K .......... .......... .......... .......... .......... 83% 57.2M 0s
 46250K .......... .......... .......... .......... .......... 83% 54.9M 0s
 46300K .......... .......... .......... .......... .......... 83% 8.43M 0s
 46350K .......... .......... .......... .......... .......... 83% 50.2M 0s
 46400K .......... .......... .......... .......... .......... 83% 56.0M 0s
 46450K .......... .......... .......... .......... .......... 83% 6.13M 0s
 46500K .......... .......... .......... .......... .......... 83%  215M 0s
 46550K .......... .......... .......... .......... .......... 84%  179M 0s
 46600K .......... .......... .......... .......... .......... 84%  229M 0s
 46650K .......... .......... .......... .......... .......... 84%  257M 0s
 46700K .......... .......... .......... .......... .......... 84%  235M 0s
 46750K .......... .......... .......... .......... .......... 84%  199M 0s
 46800K .......... .......... .......... .......... .......... 84%  252M 0s
 46850K .......... .......... .......... .......... .......... 84%  223M 0s
 46900K .......... .......... .......... .......... .......... 84%  253M 0s
 46950K .......... .......... .......... .......... .......... 84% 57.4M 0s
 47000K .......... .......... .......... .......... .......... 84% 48.1M 0s
 47050K .......... .......... .......... .......... .......... 84% 50.6M 0s
 47100K .......... .......... .......... .......... .......... 85% 52.6M 0s
 47150K .......... .......... .......... .......... .......... 85% 43.9M 0s
 47200K .......... .......... .......... .......... .......... 85% 47.9M 0s
 47250K .......... .......... .......... .......... .......... 85% 44.8M 0s
 47300K .......... .......... .......... .......... .......... 85% 53.4M 0s
 47350K .......... .......... .......... .......... .......... 85% 41.4M 0s
 47400K .......... .......... .......... .......... .......... 85% 38.7M 0s
 47450K .......... .......... .......... .......... .......... 85% 53.4M 0s
 47500K .......... .......... .......... .......... .......... 85% 6.68M 0s
 47550K .......... .......... .......... .......... .......... 85%  195M 0s
 47600K .......... .......... .......... .......... .......... 85%  283M 0s
 47650K .......... .......... .......... .......... .......... 86%  219M 0s
 47700K .......... .......... .......... .......... .......... 86%  253M 0s
 47750K .......... .......... .......... .......... .......... 86%  266M 0s
 47800K .......... .......... .......... .......... .......... 86%  237M 0s
 47850K .......... .......... .......... .......... .......... 86%  226M 0s
 47900K .......... .......... .......... .......... .......... 86%  218M 0s
 47950K .......... .......... .......... .......... .......... 86%  241M 0s
 48000K .......... .......... .......... .......... .......... 86%  254M 0s
 48050K .......... .......... .......... .......... .......... 86%  174M 0s
 48100K .......... .......... .......... .......... .......... 86%  221M 0s
 48150K .......... .......... .......... .......... .......... 86% 61.4M 0s
 48200K .......... .......... .......... .......... .......... 86% 51.7M 0s
 48250K .......... .......... .......... .......... .......... 87% 46.1M 0s
 48300K .......... .......... .......... .......... .......... 87% 47.5M 0s
 48350K .......... .......... .......... .......... .......... 87% 51.0M 0s
 48400K .......... .......... .......... .......... .......... 87% 39.2M 0s
 48450K .......... .......... .......... .......... .......... 87% 37.7M 0s
 48500K .......... .......... .......... .......... .......... 87% 48.0M 0s
 48550K .......... .......... .......... .......... .......... 87% 50.8M 0s
 48600K .......... .......... .......... .......... .......... 87% 23.6M 0s
 48650K .......... .......... .......... .......... .......... 87% 46.6M 0s
 48700K .......... .......... .......... .......... .......... 87% 17.8M 0s
 48750K .......... .......... .......... .......... .......... 87% 47.2M 0s
 48800K .......... .......... .......... .......... .......... 88% 53.3M 0s
 48850K .......... .......... .......... .......... .......... 88% 23.4M 0s
 48900K .......... .......... .......... .......... .......... 88% 53.6M 0s
 48950K .......... .......... .......... .......... .......... 88% 30.8M 0s
 49000K .......... .......... .......... .......... .......... 88%  187M 0s
 49050K .......... .......... .......... .......... .......... 88%  199M 0s
 49100K .......... .......... .......... .......... .......... 88%  251M 0s
 49150K .......... .......... .......... .......... .......... 88%  247M 0s
 49200K .......... .......... .......... .......... .......... 88%  232M 0s
 49250K .......... .......... .......... .......... .......... 88%  160M 0s
 49300K .......... .......... .......... .......... .......... 88%  240M 0s
 49350K .......... .......... .......... .......... .......... 89%  245M 0s
 49400K .......... .......... .......... .......... .......... 89%  228M 0s
 49450K .......... .......... .......... .......... .......... 89%  212M 0s
 49500K .......... .......... .......... .......... .......... 89%  218M 0s
 49550K .......... .......... .......... .......... .......... 89%  220M 0s
 49600K .......... .......... .......... .......... .......... 89%  229M 0s
 49650K .......... .......... .......... .......... .......... 89%  203M 0s
 49700K .......... .......... .......... .......... .......... 89%  217M 0s
 49750K .......... .......... .......... .......... .......... 89%  229M 0s
 49800K .......... .......... .......... .......... .......... 89% 81.6M 0s
 49850K .......... .......... .......... .......... .......... 89% 44.1M 0s
 49900K .......... .......... .......... .......... .......... 90% 48.7M 0s
 49950K .......... .......... .......... .......... .......... 90% 46.4M 0s
 50000K .......... .......... .......... .......... .......... 90% 45.9M 0s
 50050K .......... .......... .......... .......... .......... 90% 39.2M 0s
 50100K .......... .......... .......... .......... .......... 90% 46.9M 0s
 50150K .......... .......... .......... .......... .......... 90% 57.9M 0s
 50200K .......... .......... .......... .......... .......... 90% 27.8M 0s
 50250K .......... .......... .......... .......... .......... 90% 45.8M 0s
 50300K .......... .......... .......... .......... .......... 90% 15.6M 0s
 50350K .......... .......... .......... .......... .......... 90% 51.5M 0s
 50400K .......... .......... .......... .......... .......... 90% 15.5M 0s
 50450K .......... .......... .......... .......... .......... 91% 49.6M 0s
 50500K .......... .......... .......... .......... .......... 91% 52.5M 0s
 50550K .......... .......... .......... .......... .......... 91% 33.4M 0s
 50600K .......... .......... .......... .......... .......... 91% 46.9M 0s
 50650K .......... .......... .......... .......... .......... 91% 51.9M 0s
 50700K .......... .......... .......... .......... .......... 91% 48.5M 0s
 50750K .......... .......... .......... .......... .......... 91% 51.8M 0s
 50800K .......... .......... .......... .......... .......... 91% 53.4M 0s
 50850K .......... .......... .......... .......... .......... 91% 51.3M 0s
 50900K .......... .......... .......... .......... .......... 91% 45.9M 0s
 50950K .......... .......... .......... .......... .......... 91% 51.3M 0s
 51000K .......... .......... .......... .......... .......... 92% 52.3M 0s
 51050K .......... .......... .......... .......... .......... 92%  135M 0s
 51100K .......... .......... .......... .......... .......... 92%  209M 0s
 51150K .......... .......... .......... .......... .......... 92%  175M 0s
 51200K .......... .......... .......... .......... .......... 92%  236M 0s
 51250K .......... .......... .......... .......... .......... 92%  253M 0s
 51300K .......... .......... .......... .......... .......... 92%  267M 0s
 51350K .......... .......... .......... .......... .......... 92%  194M 0s
 51400K .......... .......... .......... .......... .......... 92%  223M 0s
 51450K .......... .......... .......... .......... .......... 92%  233M 0s
 51500K .......... .......... .......... .......... .......... 92%  250M 0s
 51550K .......... .......... .......... .......... .......... 93%  241M 0s
 51600K .......... .......... .......... .......... .......... 93% 76.1M 0s
 51650K .......... .......... .......... .......... .......... 93% 54.1M 0s
 51700K .......... .......... .......... .......... .......... 93%  256M 0s
 51750K .......... .......... .......... .......... .......... 93%  198M 0s
 51800K .......... .......... .......... .......... .......... 93% 33.5M 0s
 51850K .......... .......... .......... .......... .......... 93% 68.9M 0s
 51900K .......... .......... .......... .......... .......... 93% 51.6M 0s
 51950K .......... .......... .......... .......... .......... 93% 46.3M 0s
 52000K .......... .......... .......... .......... .......... 93% 47.4M 0s
 52050K .......... .......... .......... .......... .......... 93% 51.1M 0s
 52100K .......... .......... .......... .......... .......... 94% 45.4M 0s
 52150K .......... .......... .......... .......... .......... 94% 52.2M 0s
 52200K .......... .......... .......... .......... .......... 94% 51.8M 0s
 52250K .......... .......... .......... .......... .......... 94% 54.2M 0s
 52300K .......... .......... .......... .......... .......... 94% 44.6M 0s
 52350K .......... .......... .......... .......... .......... 94% 55.8M 0s
 52400K .......... .......... .......... .......... .......... 94% 53.0M 0s
 52450K .......... .......... .......... .......... .......... 94% 53.2M 0s
 52500K .......... .......... .......... .......... .......... 94% 45.5M 0s
 52550K .......... .......... .......... .......... .......... 94% 54.3M 0s
 52600K .......... .......... .......... .......... .......... 94% 52.9M 0s
 52650K .......... .......... .......... .......... .......... 95% 4.17M 0s
 52700K .......... .......... .......... .......... .......... 95% 48.0M 0s
 52750K .......... .......... .......... .......... .......... 95%  135M 0s
 52800K .......... .......... .......... .......... .......... 95%  263M 0s
 52850K .......... .......... .......... .......... .......... 95%  222M 0s
 52900K .......... .......... .......... .......... .......... 95%  208M 0s
 52950K .......... .......... .......... .......... .......... 95%  243M 0s
 53000K .......... .......... .......... .......... .......... 95%  259M 0s
 53050K .......... .......... .......... .......... .......... 95%  239M 0s
 53100K .......... .......... .......... .......... .......... 95%  235M 0s
 53150K .......... .......... .......... .......... .......... 95%  242M 0s
 53200K .......... .......... .......... .......... .......... 96%  236M 0s
 53250K .......... .......... .......... .......... .......... 96%  212M 0s
 53300K .......... .......... .......... .......... .......... 96%  248M 0s
 53350K .......... .......... .......... .......... .......... 96%  221M 0s
 53400K .......... .......... .......... .......... .......... 96%  251M 0s
 53450K .......... .......... .......... .......... .......... 96%  205M 0s
 53500K .......... .......... .......... .......... .......... 96%  243M 0s
 53550K .......... .......... .......... .......... .......... 96%  227M 0s
 53600K .......... .......... .......... .......... .......... 96%  248M 0s
 53650K .......... .......... .......... .......... .......... 96%  227M 0s
 53700K .......... .......... .......... .......... .......... 96%  237M 0s
 53750K .......... .......... .......... .......... .......... 96%  240M 0s
 53800K .......... .......... .......... .......... .......... 97% 74.6M 0s
 53850K .......... .......... .......... .......... .......... 97% 47.5M 0s
 53900K .......... .......... .......... .......... .......... 97% 55.3M 0s
 53950K .......... .......... .......... .......... .......... 97% 73.2M 0s
 54000K .......... .......... .......... .......... .......... 97%  149M 0s
 54050K .......... .......... .......... .......... .......... 97% 48.5M 0s
 54100K .......... .......... .......... .......... .......... 97% 55.5M 0s
 54150K .......... .......... .......... .......... .......... 97% 56.7M 0s
 54200K .......... .......... .......... .......... .......... 97% 43.2M 0s
 54250K .......... .......... .......... .......... .......... 97% 48.9M 0s
 54300K .......... .......... .......... .......... .......... 97% 53.1M 0s
 54350K .......... .......... .......... .......... .......... 98% 55.6M 0s
 54400K .......... .......... .......... .......... .......... 98% 46.1M 0s
 54450K .......... .......... .......... .......... .......... 98% 52.2M 0s
 54500K .......... .......... .......... .......... .......... 98% 52.7M 0s
 54550K .......... .......... .......... .......... .......... 98% 54.9M 0s
 54600K .......... .......... .......... .......... .......... 98% 47.7M 0s
 54650K .......... .......... .......... .......... .......... 98% 52.7M 0s
 54700K .......... .......... .......... .......... .......... 98% 52.6M 0s
 54750K .......... .......... .......... .......... .......... 98% 7.65M 0s
 54800K .......... .......... .......... .......... .......... 98% 43.5M 0s
 54850K .......... .......... .......... .......... .......... 98% 57.5M 0s
 54900K .......... .......... .......... .......... .......... 99% 63.5M 0s
 54950K .......... .......... .......... .......... .......... 99% 49.1M 0s
 55000K .......... .......... .......... .......... .......... 99% 51.6M 0s
 55050K .......... .......... .......... .......... .......... 99% 76.3M 0s
 55100K .......... .......... .......... .......... .......... 99%  249M 0s
 55150K .......... .......... .......... .......... .......... 99%  264M 0s
 55200K .......... .......... .......... .......... .......... 99% 72.7M 0s
 55250K .......... .......... .......... .......... .......... 99% 57.4M 0s
 55300K .......... .......... .......... .......... .......... 99% 58.0M 0s
 55350K .......... .......... .......... .......... .......... 99% 81.8M 0s
 55400K .......... .......... .......... .......... .......... 99%  106M 0s
 55450K .......... ....                                       100% 74.7M=1.0s

2024-11-12 18:24:47 (56.9 MB/s) - ‘nx_trajs_fulv.tgz’ saved [56795768/56795768]

After downloading and unpacking the NAMD data, we need to move to the working directory that contains the 50 TRAJ folders with the simulation results. ULaMDyn will automatically recognize the available trajectories to extract all the information required to perform the analysis.

[5]:
import os

TUTORIAL_DIR = "nx_trajs_fulv"

os.chdir(TUTORIAL_DIR)
os.listdir('./')
[5]:
['TRAJ5',
 'TRAJ42',
 'geom.xyz',
 'TRAJ27',
 'TRAJ41',
 'TRAJ13',
 'TRAJ20',
 'TRAJ38',
 'TRAJ10',
 'TRAJ45',
 'TRAJ16',
 'TRAJ50',
 'TRAJ24',
 'TRAJ32',
 'TRAJ14',
 'TRAJ36',
 'TRAJ9',
 'TRAJ4',
 'TRAJ22',
 'TRAJ49',
 'TRAJ7',
 'TRAJ2',
 'TRAJ34',
 'TRAJ33',
 'TRAJ18',
 'TRAJ26',
 'TRAJ6',
 'TRAJ19',
 'TRAJ25',
 'TRAJ48',
 'TRAJ12',
 'TRAJ15',
 'TRAJ37',
 'TRAJ28',
 'TRAJ29',
 'TRAJ47',
 'TRAJ11',
 'TRAJ23',
 'TRAJ30',
 'TRAJ3',
 'TRAJ17',
 'TRAJ40',
 'TRAJ31',
 'TRAJ1',
 'TRAJ35',
 'TRAJ8',
 'TRAJ43',
 'TRAJ21',
 'TRAJ44',
 'TRAJ46',
 'TRAJ39']

ULaMDyn via command-line interface

The command-line interface (CLI) of ULaMDyn provides an alias to a set of predefined wrapper functions to assist through the complete process of performing unsupervised learning analysis on NAMD data. Alternatively, one can also use the CLI to easily extract the relevant computed quantities available in the multiple trajectories and export the collected information as structured datasets in csv format. To check for the options available in the CLI, one can run the help function in a shell terminal.

[6]:
! run-ulamdyn --help
usage: run-ulamdyn [-h] [--save_dataset] [--save_xyz] [--use_au] [--create_stats] [--bootstrap]
                   {ring_analysis,dim_reduction,clustering,sampling,nma} ...

options:
  -h, --help            show this help message and exit
  --save_dataset         Select data set to build from the MD outputs and save as csv file.
                         Options: all, properties, gradients, nacs, velocities, vibspec.
  --save_xyz             Write the requested data from all trajectories into XYZ file(s). The argument should be given as a comma separated list of strings,
                         starting with geoms or grads and followed by optional subargs (example: "hops" or "hops,S21" or a query in the form "TRAJ==10").
  --use_au               If selected, the XYZ Cartesian coordinates or gradients will be written in atomic units (useful for MLatom training).
  --create_stats         Generate a data set with basic statistics (mean, median, and std) for all the trajectories.
                         Options: all, ekin, vibspec.
  --bootstrap            Compute the basic statistics and confidence intervals for the properties data set using the bootstrap approach.
                         Options: n_repeats, and/or n_samples, and/or ci_level.

Analysis:
  {ring_analysis,dim_reduction,clustering,sampling,nma}
    ring_analysis       Cremer-Pople analysis for a cyclic substructure.
    dim_reduction       Dimensionality reduction analysis in molecular configuration space.
    clustering          Perform cluster analysis in geometry or trajectory space.
    sampling            Sample new molecular geometries using Gaussian Mixture model.
    nma                 Perform Normal Mode analysis to describe the molecular motion.

Unsupervised analysis pipeline

As shown in the CLI example above, ULaMDyn performed the complete clustering analysis in an automated way, starting from the data collection, then converting geometries into a descriptor, and finally running the clustering algorithm on the geometries’ space. In addition, the program performed several statistical analysis by groupping the data according the cluster labels provided by the clustering algorithm. In the next, we will unfold this pipeline process to see how ULaMDyn can be used to perform this analysis step-by-step in a Python framework.

[12]:
import numpy as np
import pandas as pd
import ulamdyn as umd

# Packages for visualization
import py3Dmol
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
[13]:
# Plot settings

%matplotlib inline

mpl.rcParams['figure.figsize'] = [7.8,5.9]
mpl.rcParams['axes.labelsize'] = 15
mpl.rcParams['xtick.labelsize'] = 13
mpl.rcParams['ytick.labelsize'] = 13
mpl.rcParams['legend.fontsize'] = 15

# plt.style.use('seaborn-white')
sns.set(color_codes=True)

legend_settings = {'loc':'upper center', 'ncol':3, 'frameon':True, 'facecolor':'white',
                   'framealpha':0.8, 'bbox_to_anchor':(0.5, 1.11)}
[14]:
def view_molecule(xyz_geom, style):

    for k in style.keys():
        assert k in ('line', 'stick', 'sphere', 'carton')

    molview = py3Dmol.view(width=350,height=350)
    molview.addModel(xyz_geom,'xyz')

    molview.setStyle(style)
    molview.setBackgroundColor('0xeeeeee')
    molview.zoomTo()

    return molview

Read and inspect data

The first step in the pipeline for analyzing the nonadiabatic MD data is to collect the relevant quantities (e.g., molecular geometries, potential energy for each electronic state, kinetic energy, energy-gradients, oscillator strength, etc.) computed by the MD program for each trajectory. In the case of Newton-X CS, this information is typically outputted in unstructured text files that you can find in each TRAJXX/RESULTS folder. Thus, ULaMDyn provides built-in classes to collect all these data and stores them in a Python object for easy manipulation. In the next, we will see how these data collection classes can be used in a Python environment.

Collect molecular geometries from NAMD trajectories

[15]:
geoms_loader = umd.GetCoords()
geoms_loader.read_all_trajs()
[16]:
print(geoms_loader)
------------------------------------------------
Current status of the GetCoords class variables:
------------------------------------------------

  • dataset -> None
  • eq_xyz, array of shape -> (12, 3)
  • labels -> ['C', 'C', 'C', 'C', 'C', 'C', 'H', 'H', 'H', 'H', 'H', 'H']
  • rmsd, array of shape -> (30028,)
  • traj_time, array of shape -> (30028, 2)
  • trajectories -> {'TRAJ1': 60.0, 'TRAJ2': 60.0, 'TRAJ3': 57.8, 'TRAJ4': 60.0, 'TRAJ5': 60.0, 'TRAJ6': 60.0, 'TRAJ7': 60.0, 'TRAJ8': 60.0, 'TRAJ9': 60.0, 'TRAJ10': 60.0, 'TRAJ11': 60.0, 'TRAJ12': 60.0, 'TRAJ13': 60.0, 'TRAJ14': 60.0, 'TRAJ15': 60.0, 'TRAJ16': 60.0, 'TRAJ17': 60.0, 'TRAJ18': 60.0, 'TRAJ19': 60.0, 'TRAJ20': 60.0, 'TRAJ21': 60.0, 'TRAJ22': 60.0, 'TRAJ23': 60.0, 'TRAJ24': 60.0, 'TRAJ25': 60.0, 'TRAJ26': 60.0, 'TRAJ27': 60.0, 'TRAJ28': 60.0, 'TRAJ29': 60.0, 'TRAJ30': 60.0, 'TRAJ31': 60.0, 'TRAJ32': 60.0, 'TRAJ33': 60.0, 'TRAJ34': 60.0, 'TRAJ35': 60.0, 'TRAJ36': 60.0, 'TRAJ37': 60.0, 'TRAJ38': 60.0, 'TRAJ39': 60.0, 'TRAJ40': 60.0, 'TRAJ41': 60.0, 'TRAJ42': 60.0, 'TRAJ43': 60.0, 'TRAJ44': 60.0, 'TRAJ45': 60.0, 'TRAJ46': 60.0, 'TRAJ47': 60.0, 'TRAJ48': 60.0, 'TRAJ49': 60.0, 'TRAJ50': 60.0}
  • xyz, array of shape -> (30028, 12, 3)

Once all molecular geometries have been collected and loaded into the class variable, one can easily access any particular geometry of the dataset in the XYZ format by specifying the TRAJ and time indices. Then, the selected geometry can be visualized in the Jupyter notebook by using py3Dmol.

[17]:
# Select geometry either from trajectory and time indices
# or by the geometry number in the loaded dataset.
geometry = geoms_loader[9,10.0]
print(geometry)
12
TRAJ = 9  |  time = 10.0
C       -1.04108537   0.39497082   0.03064102
C       -1.25596310  -1.24557193  -0.05131952
C       -0.07134525  -1.66552592  -0.03300498
C        1.00918101  -0.58196867   0.05089400
C        0.24810232   0.50942902   0.06853013
C        0.91058271   1.95719001   0.08733781
H       -1.85932628   1.01074471  -0.06895255
H       -2.07245770  -1.80836479  -0.03161288
H        0.09471855  -2.74239259   0.03521695
H        1.98639311  -0.73316306  -0.13853527
H        0.09293532   2.73814602   0.01169130
H        1.95826467   2.16650638   0.03911399

[18]:
s = {'stick': {'radius': .15}, 'sphere': {'scale': 0.20}}
view_molecule(geometry, s)

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

[18]:
<py3Dmol.view at 0x7fa37ca8b1c0>

If a reference geometry named geom.xyz is available in the working directory, the read_all_trajs() method will compute, by default, the RMSD between each current geometry read from the trajectories and a given reference geometry. In our example, the reference geometry is the ground-state one (S\(_0\) minimum). For some unsupervised learning algorithms implemented in ULaMDyn, it is also possible to use the RMSD as a distance metric to compare pair of geometries.

[19]:
rmsd_vals = geoms_loader.rmsd
hist = plt.hist(rmsd_vals, bins=50, alpha=0.8)
plt.xlabel(r"RMSD $\AA$")
plt.ylabel("Frequency")
plt.show()
_images/ulamdyn_walking-through_30_0.png

Build dataset with chemical properties

The quantum mechanical quantities such as potential energies and oscillator strength are collected from the Newton-X outputs using the GetProperties class. In the case of fulvene dynamics, we have available the potential energy of the ground and first excited-state, the oscillator strength corresponding to the transition between these two states, and also the MCSCF coefficients of the CAS wave function. In addition, there is also a function to collect the state’s population computed by Newton-X. In the next cells, we will see examples of how to extract these data.

[20]:
properties_loader = umd.GetProperties()
[21]:
df_props = properties_loader.energies()
Reading energies from TRAJ1...
Reading energies from TRAJ2...
Reading energies from TRAJ3...
Reading energies from TRAJ4...
Reading energies from TRAJ5...
Reading energies from TRAJ6...
Reading energies from TRAJ7...
Reading energies from TRAJ8...
Reading energies from TRAJ9...
Reading energies from TRAJ10...
Reading energies from TRAJ11...
Reading energies from TRAJ12...
Reading energies from TRAJ13...
Reading energies from TRAJ14...
Reading energies from TRAJ15...
Reading energies from TRAJ16...
Reading energies from TRAJ17...
Reading energies from TRAJ18...
Reading energies from TRAJ19...
Reading energies from TRAJ20...
Reading energies from TRAJ21...
Reading energies from TRAJ22...
Reading energies from TRAJ23...
Reading energies from TRAJ24...
Reading energies from TRAJ25...
Reading energies from TRAJ26...
Reading energies from TRAJ27...
Reading energies from TRAJ28...
Reading energies from TRAJ29...
Reading energies from TRAJ30...
Reading energies from TRAJ31...
Reading energies from TRAJ32...
Reading energies from TRAJ33...
Reading energies from TRAJ34...
Reading energies from TRAJ35...
Reading energies from TRAJ36...
Reading energies from TRAJ37...
Reading energies from TRAJ38...
Reading energies from TRAJ39...
Reading energies from TRAJ40...
Reading energies from TRAJ41...
Reading energies from TRAJ42...
Reading energies from TRAJ43...
Reading energies from TRAJ44...
Reading energies from TRAJ45...
Reading energies from TRAJ46...
Reading energies from TRAJ47...
Reading energies from TRAJ48...
Reading energies from TRAJ49...
Reading energies from TRAJ50...

-----------------------------------------------------
The properties dataset is empty.
Updating class variable with the current loaded data.
-----------------------------------------------------

[22]:
df_props
[22]:
TRAJ time State Total_Energy Hops_S12 Hops_S21 DE21 S1
0 1 0.0 2 -6271.713990 0 0 3.852182 -6276.740507
1 1 0.1 2 -6271.714018 0 0 3.839637 -6276.777841
2 1 0.2 2 -6271.714045 0 0 3.825025 -6276.812753
3 1 0.3 2 -6271.714072 0 0 3.808371 -6276.844754
4 1 0.4 2 -6271.714099 0 0 3.789650 -6276.873408
... ... ... ... ... ... ... ... ...
30023 50 59.6 1 -6271.038141 0 0 2.957308 -6273.467928
30024 50 59.7 1 -6271.038141 0 0 2.948355 -6273.450758
30025 50 59.8 1 -6271.038114 0 0 2.938260 -6273.432499
30026 50 59.9 1 -6271.038086 0 0 2.927103 -6273.413642
30027 50 60.0 1 -6271.038032 0 0 2.914885 -6273.394811

30028 rows × 8 columns

Note that, for consistency, the datasets generated by ULaMDyn will contain two primary indices, corresponding to the columns TRAJ and time, which allow to identify each data point in the whole set of NAMD trajectories available.

[23]:
_ = properties_loader.populations()
Reading populations from TRAJ1...
Reading populations from TRAJ2...
Reading populations from TRAJ3...
Reading populations from TRAJ4...
Reading populations from TRAJ5...
Reading populations from TRAJ6...
Reading populations from TRAJ7...
Reading populations from TRAJ8...
Reading populations from TRAJ9...
Reading populations from TRAJ10...
Reading populations from TRAJ11...
Reading populations from TRAJ12...
Reading populations from TRAJ13...
Reading populations from TRAJ14...
Reading populations from TRAJ15...
Reading populations from TRAJ16...
Reading populations from TRAJ17...
Reading populations from TRAJ18...
Reading populations from TRAJ19...
Reading populations from TRAJ20...
Reading populations from TRAJ21...
Reading populations from TRAJ22...
Reading populations from TRAJ23...
Reading populations from TRAJ24...
Reading populations from TRAJ25...
Reading populations from TRAJ26...
Reading populations from TRAJ27...
Reading populations from TRAJ28...
Reading populations from TRAJ29...
Reading populations from TRAJ30...
Reading populations from TRAJ31...
Reading populations from TRAJ32...
Reading populations from TRAJ33...
Reading populations from TRAJ34...
Reading populations from TRAJ35...
Reading populations from TRAJ36...
Reading populations from TRAJ37...
Reading populations from TRAJ38...
Reading populations from TRAJ39...
Reading populations from TRAJ40...
Reading populations from TRAJ41...
Reading populations from TRAJ42...
Reading populations from TRAJ43...
Reading populations from TRAJ44...
Reading populations from TRAJ45...
Reading populations from TRAJ46...
Reading populations from TRAJ47...
Reading populations from TRAJ48...
Reading populations from TRAJ49...
Reading populations from TRAJ50...
[24]:
df_props = properties_loader.dataset
df_props
[24]:
TRAJ time State Total_Energy Hops_S12 Hops_S21 DE21 S1 Pop1 Pop2
0 1 0.0 2 -6271.713990 0 0 3.852182 -6276.740507 0.000000 1.000000e+00
1 1 0.1 2 -6271.714018 0 0 3.839637 -6276.777841 0.000001 9.999989e-01
2 1 0.2 2 -6271.714045 0 0 3.825025 -6276.812753 0.000004 9.999964e-01
3 1 0.3 2 -6271.714072 0 0 3.808371 -6276.844754 0.000006 9.999936e-01
4 1 0.4 2 -6271.714099 0 0 3.789650 -6276.873408 0.000008 9.999916e-01
... ... ... ... ... ... ... ... ... ... ...
30023 50 59.6 1 -6271.038141 0 0 2.957308 -6273.467928 1.000000 2.321440e-07
30024 50 59.7 1 -6271.038141 0 0 2.948355 -6273.450758 1.000000 1.469556e-07
30025 50 59.8 1 -6271.038114 0 0 2.938260 -6273.432499 1.000000 1.115193e-07
30026 50 59.9 1 -6271.038086 0 0 2.927103 -6273.413642 1.000000 1.251270e-07
30027 50 60.0 1 -6271.038032 0 0 2.914885 -6273.394811 1.000000 1.869723e-07

30028 rows × 10 columns

[25]:
egap = df_props['DE21'].values
hist = plt.hist(egap, bins=50, alpha=0.8)
plt.xlabel(r"S$_0$-S$_1$ energy gap (eV)")
plt.ylabel("Frequency")
plt.show()
_images/ulamdyn_walking-through_39_0.png

Geometry-based descriptors

[26]:
geoms_loader.xyz
[26]:
array([[[-1.17011027,  0.32892165, -0.04880431],
        [-1.33595893, -1.10235717,  0.08826031],
        [ 0.07813233, -1.68450973,  0.08371418],
        ...,
        [ 2.08413222, -0.56710914,  0.04163883],
        [ 0.36090265,  2.80427644,  0.15999523],
        [ 1.87742744,  2.07998925,  0.06344612]],

       [[-1.17009904,  0.32722287, -0.04883062],
        [-1.3352209 , -1.10354471,  0.08816412],
        [ 0.07797813, -1.68578747,  0.08389662],
        ...,
        [ 2.0835327 , -0.56644704,  0.04307052],
        [ 0.35768954,  2.80912331,  0.16216635],
        [ 1.87931688,  2.07674128,  0.0627888 ]],

       [[-1.17003061,  0.32551303, -0.04884248],
        [-1.33436844, -1.10473665,  0.08806767],
        [ 0.0778281 , -1.68704068,  0.08407352],
        ...,
        [ 2.0828739 , -0.56582214,  0.04446104],
        [ 0.35444625,  2.81379853,  0.16432876],
        [ 1.8812048 ,  2.07338819,  0.06213557]],

       ...,

       [[-1.15575277,  0.18820841,  0.20108705],
        [-1.19114507, -0.98830266,  0.03428959],
        [ 0.07003643, -1.6413994 , -0.17449003],
        ...,
        [ 1.87553781, -0.58559218, -0.01304511],
        [ 0.47200174,  2.45773948, -0.74605658],
        [ 1.53693159,  2.20295005,  0.69547681]],

       [[-1.15756582,  0.18921336,  0.19808514],
        [-1.19267827, -0.98859216,  0.03336453],
        [ 0.06850806, -1.64310416, -0.17447832],
        ...,
        [ 1.87462959, -0.58360654, -0.01118773],
        [ 0.47887559,  2.45507978, -0.74051501],
        [ 1.53718073,  2.2080186 ,  0.68991625]],

       [[-1.15933222,  0.19034722,  0.19506302],
        [-1.19420535, -0.9889576 ,  0.03241057],
        [ 0.06697331, -1.64478863, -0.17445305],
        ...,
        [ 1.87422078, -0.58169668, -0.00930462],
        [ 0.48561041,  2.45264341, -0.73498533],
        [ 1.5375595 ,  2.21302762,  0.68429186]]])

In ULaMDyn, there are two classes of symmetry-aware descriptors (translational and rotational invariant) based on molecular geometries: the pairwise atom-atom distances (R2 family of descriptors) and the Z-Matrix representation. Each one of these descriptors is handled by Python classes that take a GetCoords() object as input to access the NAMD molecular geometries and convert them into the specified descriptor type. As you will see in the example below, the R2 descriptor class contains the function build_descriptor(), which returns a Pandas data frame object with the descriptor calculated for all geometries of each NAMD trajectory. Other variants of the R2 descriptor supported by this function include:

  • inv-R2 -> inverse of the R2 matrix

  • delta-R2 -> difference in the R2 descriptor of each MD frame and a reference geometry

  • RE -> inverse R2 of each MD frame normalized by the R2 vector of a reference geometry

[27]:
atom_dist = umd.R2(geoms_loader)
df_r2 = atom_dist.build_descriptor(variant='R2')
df_r2.head()
[27]:
TRAJ time r12 r13 r23 r14 r24 r34 r15 r25 ... r212 r312 r412 r512 r612 r712 r812 r912 r1012 r1112
0 1 0.0 1.447360 2.372673 1.529240 2.392659 2.373981 1.365330 1.395893 2.297261 ... 4.522587 4.172448 2.914349 2.236683 1.091192 4.006476 5.540837 5.098959 2.655246 1.683378
1 1 0.1 1.446765 2.372240 1.528449 2.392770 2.374176 1.366707 1.397138 2.297722 ... 4.521959 4.171557 2.911907 2.235791 1.090342 4.008308 5.543325 5.095413 2.651139 1.691629
2 1 0.2 1.446155 2.371748 1.527545 2.392830 2.374330 1.368172 1.398351 2.298104 ... 4.521179 4.170548 2.909249 2.234833 1.089398 4.010258 5.545897 5.091789 2.646963 1.699895
3 1 0.3 1.445535 2.371200 1.526529 2.392841 2.374441 1.369723 1.399532 2.298409 ... 4.520252 4.169425 2.906380 2.233810 1.088363 4.012306 5.548541 5.088094 2.642723 1.708158
4 1 0.4 1.444908 2.370599 1.525402 2.392807 2.374513 1.371358 1.400684 2.298639 ... 4.519182 4.168190 2.903305 2.232728 1.087243 4.014435 5.551243 5.084338 2.638424 1.716401

5 rows × 68 columns

[28]:
idx_all_hops = df_props.query("Hops_S21 == 1").index.tolist() + df_props.query("Hops_S12 == 1").index.tolist()
idx_no_hops = df_props.query("Hops_S21 == 0 and Hops_S12 == 0").index.tolist()

h1 = plt.hist(df_r2.iloc[idx_all_hops]['r56'], bins=20, color='red', alpha=0.5, label='Hops')
h2 = plt.hist(df_r2.iloc[idx_no_hops]['r56'].sample(len(idx_all_hops)), bins=20, color='blue',
              alpha=0.5, label='No hops')
plt.xlabel(r"C5-C6 bond distance ($\AA$)")
plt.ylabel("Frequency")
plt.legend()
plt.show()
_images/ulamdyn_walking-through_44_0.png
[29]:
for traj in df_r2['TRAJ'].unique():
  t = df_r2.query(f"TRAJ == {traj}")['time'].values
  c5_c6_dist = df_r2.query(f"TRAJ == {traj}")['r56'].values
  plt.plot(t, c5_c6_dist, c='k', lw=0.3, alpha=0.5)
plt.scatter(df_r2.iloc[idx_all_hops]['time'], df_r2.iloc[idx_all_hops]['r56'],
            color='red', s=1.5)
plt.xlabel("Time (fs)")
plt.ylabel(r"C5-C6 bond distance ($\AA$)")
plt.xlim(0,60)
plt.tight_layout()
plt.show()
_images/ulamdyn_walking-through_45_0.png

Dimensionality reduction

In unsupervised learning analysis, dimensionality reduction is a key concept that refers to the process of reducing the number of features or variables in a dataset. The main goal is to find a low-dimensional representation of the data while still capturing the most important information contained in the data, thereby reducing the complexity of the analysis. This is important because as the number of features or variables increases, the difficulty of visualizing and analyzing the data also increases. By compressing the data in a meaningful way, it becomes easier to identify patterns, relationships, and clusters within the data. There are various techniques used in dimension reduction, including principal component analysis (PCA), isometric feature mapping (Isomap), and t-distributed stochastic neighbor embedding (t-SNE), each of which has its own strengths and weaknesses. These algorithms can be used either as a data exploration tool for visual inspection of the data structure via scatter plots or as a preprocessing step to provide effectively compact input data for supervised learning methods.

[30]:
dimred = umd.DimensionReduction(data=df_r2, dt=0.5, scaler='standard')

Scaling data with standard method

Isomap

In the example below, we will use the Isomap algorithm, which is a manifold learning technique used as a non-linear feature reduction method that aims at preserving the geodesic distances between data points in the low-dimensional space. The main assumption behind Isomap is that the data, even though it may be recorded in a very high dimensional space, inherently leaves in a low dimensional structure which can be encoded in terms of a manifold. In a nutshell, the Isomap algorithm works as follows:

  1. Given some abstract data points \(X_1,...,X_n\) and a distance function \(d(x_i,x_j)\);

  2. Build a \(k\)-nearest neighbor graph (using fixed radius or KNN algorithm) where the edges are weighted by the distances. These are local distances;

  3. In the \(k\)NN graph, compute the shortest path distances between all pair of data points and store them in a matrix D. They correspond to the geodesic distances;

  4. Then apply the classical multidimensional scaling (MDS) method using the distance matrix D as input to find the low-dimensional space embedding that preserves the geodesic distances.

[31]:
df_isomap = dimred.isomap(n_components=2)
***********************************
*  Starting the Isomap analysis:  *
***********************************

 The following set of parameters will be used:

            n_neighbors = 30
                 radius = None
           n_components = 2
           eigen_solver = auto
                    tol = 0
               max_iter = None
            path_method = auto
    neighbors_algorithm = auto
                 n_jobs = -1
                 metric = cosine
                      p = 2
          metric_params = None

[32]:
idx = df_isomap.index.tolist()
colors = df_props['DE21'].iloc[idx].values
plt.scatter(df_isomap['X1'], df_isomap['X2'], c=colors, cmap='jet', s=3.0, alpha=0.5)
plt.xlabel('X1')
plt.ylabel('X2')
plt.title('Isomap @ R2 descriptor')
cbar = plt.colorbar(pad=0.01)
cbar.set_label(r"S$_0$-S$_1$ energy gap (eV)")
plt.tight_layout()
plt.show()
_images/ulamdyn_walking-through_52_0.png

Note that, in the two-dimensional representation of the R2 descriptor generated by Isomap, the molecular geometries characterized by a large energy gap (red dots) appear separated from those corresponding to a small energy gap (blue dots). This qualitative picture indicates that the geometries near the crossing seams should have distinguished features compared to the other geometries.

[33]:
sns.regplot(x=df_isomap['X1'], y=df_r2.iloc[idx]['r56'], scatter_kws={'s': 3.0},
            line_kws={'color':'red'})
plt.ylabel(r"C5-C6 bond distance ($\AA$)")
plt.show()
_images/ulamdyn_walking-through_54_0.png

In nonlinear dimensionality reduction, finding the relationship between the embedded dimensions and the original features to determine which one is contributing the most to the clustering patterns is usually complicated. One alternative to get an intuition about those relationships is to plot each geometrical feature of the molecules against the embedded dimensions.

Gradient-based descriptors

Because the type of analysis we are doing here is essentially a postprocessing step on the NAMD simulation data, we do not need to be restricted to looking only at the molecular geometries. In principle, any quantum chemical information available in the simulations can be used as a descriptor for unsupervised learning analysis. For example, the energy-gradient matrices of each potential energy surface carry valuable information on how fast the geometries can change during the dynamics. Hence, we will use here the difference between the energy-gradient matrices of the S\(_1\) and S\(_0\) states as an example of descriptor.

[34]:
grads_loader = umd.GetGradients()
grads_loader.build_dataframe()
Reading gradients from TRAJ1...
Reading gradients from TRAJ2...
Reading gradients from TRAJ3...
Reading gradients from TRAJ4...
Reading gradients from TRAJ5...
Reading gradients from TRAJ6...
Reading gradients from TRAJ7...
Reading gradients from TRAJ8...
Reading gradients from TRAJ9...
Reading gradients from TRAJ10...
Reading gradients from TRAJ11...
Reading gradients from TRAJ12...
Reading gradients from TRAJ13...
Reading gradients from TRAJ14...
Reading gradients from TRAJ15...
Reading gradients from TRAJ16...
Reading gradients from TRAJ17...
Reading gradients from TRAJ18...
Reading gradients from TRAJ19...
Reading gradients from TRAJ20...
Reading gradients from TRAJ21...
Reading gradients from TRAJ22...
Reading gradients from TRAJ23...
Reading gradients from TRAJ24...
Reading gradients from TRAJ25...
Reading gradients from TRAJ26...
Reading gradients from TRAJ27...
Reading gradients from TRAJ28...
Reading gradients from TRAJ29...
Reading gradients from TRAJ30...
Reading gradients from TRAJ31...
Reading gradients from TRAJ32...
Reading gradients from TRAJ33...
Reading gradients from TRAJ34...
Reading gradients from TRAJ35...
Reading gradients from TRAJ36...
Reading gradients from TRAJ37...
Reading gradients from TRAJ38...
Reading gradients from TRAJ39...
Reading gradients from TRAJ40...
Reading gradients from TRAJ41...
Reading gradients from TRAJ42...
Reading gradients from TRAJ43...
Reading gradients from TRAJ44...
Reading gradients from TRAJ45...
Reading gradients from TRAJ46...
Reading gradients from TRAJ47...
Reading gradients from TRAJ48...
Reading gradients from TRAJ49...
Reading gradients from TRAJ50...
[35]:
df_gdiff = grads_loader.datasets['S2'] - grads_loader.datasets['S1']
df_gdiff.insert(0, "TRAJ", df_props['TRAJ'].values)
df_gdiff.insert(1, "time", df_props['time'].values)
df_gdiff.head()
[35]:
TRAJ time Gx1 Gy1 Gz1 Gx2 Gy2 Gz2 Gx3 Gy3 ... Gz9 Gx10 Gy10 Gz10 Gx11 Gy11 Gz11 Gx12 Gy12 Gz12
0 1 0.0 -3.995985 -3.634359 0.102500 -2.309150 5.699686 -0.523269 6.311249 2.122976 ... 0.190308 0.013113 -0.002946 -0.123871 -0.098520 0.096437 -0.291259 0.130365 -0.017000 -0.137181
1 1 0.1 -3.992956 -3.643739 0.104824 -2.320324 5.701558 -0.522106 6.310457 2.122704 ... 0.192587 0.013431 -0.003409 -0.125089 -0.096668 0.095532 -0.292995 0.129690 -0.016902 -0.137010
2 1 0.2 -3.989125 -3.652717 0.107128 -2.332208 5.703425 -0.520901 6.310272 2.122282 ... 0.194784 0.013719 -0.003893 -0.126216 -0.094840 0.094581 -0.294662 0.128976 -0.016846 -0.136834
3 1 0.3 -3.984472 -3.661639 0.109390 -2.344914 5.705446 -0.519626 6.310493 2.121660 ... 0.196892 0.013971 -0.004412 -0.127229 -0.093038 0.093588 -0.296275 0.128224 -0.016830 -0.136662
4 1 0.4 -3.979005 -3.670339 0.111612 -2.358433 5.707595 -0.518279 6.311152 2.120817 ... 0.198907 0.014177 -0.004962 -0.128123 -0.091271 0.092560 -0.297834 0.127439 -0.016851 -0.136492

5 rows × 38 columns

[36]:
dimred = umd.DimensionReduction(data=df_gdiff, dt=0.5, scaler='standard')
df_isomap = dimred.isomap(n_components=2, metric='euclidean')

Scaling data with standard method

***********************************
*  Starting the Isomap analysis:  *
***********************************

 The following set of parameters will be used:

            n_neighbors = 30
                 radius = None
           n_components = 2
           eigen_solver = auto
                    tol = 0
               max_iter = None
            path_method = auto
    neighbors_algorithm = auto
                 n_jobs = -1
                 metric = euclidean
                      p = 2
          metric_params = None

[37]:
idx = df_isomap.index.tolist()
colors = df_props['DE21'].iloc[idx].values
plt.scatter(df_isomap['X1'], df_isomap['X2'], c=colors, cmap='jet', s=3.0, alpha=0.5)
plt.xlabel('X1')
plt.ylabel('X2')
plt.title('Isomap @ Gradients difference', fontsize=15)
cbar = plt.colorbar(pad=0.01)
cbar.set_label(r"S$_0$-S$_1$ energy gap (eV)")
plt.tight_layout()
plt.show()
_images/ulamdyn_walking-through_61_0.png

Although the Isomap diagram derived from the gradient difference descriptors looks different from the one obtained with the R2 descriptor (geometry-based), one can observe that geometries with small and large energy gaps between the S\(_0\) and S\(_1\) states still appear as distinct groups in the plot.

Clustering analysis

Clustering is a subfield of unsupervised data analysis where the learning task consists of finding commonalities in a set of objects so that objects sharing a high similarity with respect to a given metric fall into the same group (called a cluster). In contrast, dissimilar objects are assigned to distinct groups. In principle, it is not required to perform dimensionality reduction prior to clustering analysis since the similarity metric used to compare pairs of data points can be computed in the original high-dimensional space of the data. However, datasets with a very large number of features may lead to the curse of dimensionality problem, which tends to degrade the performance of clustering algorithms. So, in this case, it might be recommended to reduce the dimension of the data before applying a clustering method.

There are many different algorithms to perform clustering analysis that differ essentially in the understanding of what constitutes a cluster and how to find them. The algorithms available in ULaMDyn for clustering analysis are:

  • K-Means clustering

  • Hierarchical agglomerative clustering

  • Spectral clustering (equivalent to kernel K-Means)

Primary goal: split the NAMD dataset into smaller subgroups of similar molecular geometries to facilitate the identification of the key active internal coordinates related to the photochemical process.

[38]:
zmt = umd.ZMatrix(geoms_loader)
df_dzmt = zmt.build_descriptor(delta=True, apply_to_delta='sigmoid')
[39]:
clustering = umd.ClusterGeoms(data=df_dzmt, dt=0.5, scaler='standard')
df_kmeans = clustering.kmeans(n_clusters=3)

Scaling data with standard method


***********************************************
*  Starting the K-Means clustering analysis:  *
***********************************************

 The following set of parameters will be used:

             n_clusters = 3
                   init = k-means++
               max_iter = 1000
                    tol = 1e-06
                 n_init = 100
                verbose = 0
           random_state = 51
                 copy_x = True
              algorithm = lloyd

____________________________________
 Number of geometries per cluster:

       cluster 0 ---> 2686
       cluster 1 ---> 2820
       cluster 2 ---> 539
____________________________________

[40]:
df_cluster = pd.merge(df_props, df_kmeans, left_index=True, right_index=True)
df_cluster
[40]:
TRAJ time State Total_Energy Hops_S12 Hops_S21 DE21 S1 Pop1 Pop2 kmeans_labels
0 1 0.0 2 -6271.713990 0 0 3.852182 -6276.740507 0.000000 1.000000e+00 0
5 1 0.5 2 -6271.714099 0 0 3.768888 -6276.898361 0.000009 9.999911e-01 0
10 1 1.0 2 -6271.714099 0 0 3.635252 -6276.962906 0.000002 9.999979e-01 0
15 1 1.5 2 -6271.714018 0 0 3.454052 -6276.932075 0.000007 9.999926e-01 0
20 1 2.0 2 -6271.713936 0 0 3.229667 -6276.831883 0.000010 9.999897e-01 1
... ... ... ... ... ... ... ... ... ... ... ...
30007 50 58.0 1 -6271.037923 0 0 2.911538 -6273.560474 0.999990 9.805550e-06 2
30012 50 58.5 1 -6271.038005 0 0 2.967648 -6273.555467 0.999995 4.746033e-06 2
30017 50 59.0 1 -6271.038086 0 0 2.984437 -6273.537100 0.999998 1.821589e-06 2
30022 50 59.5 1 -6271.038141 0 0 2.965036 -6273.483657 1.000000 3.676896e-07 2
30027 50 60.0 1 -6271.038032 0 0 2.914885 -6273.394811 1.000000 1.869723e-07 2

6045 rows × 11 columns

[41]:
select_cols = ['time', 'DE21', 'Hops_S21', 'Hops_S12']
df_cluster.groupby(by=['kmeans_labels']).mean()[select_cols].reset_index()
[41]:
kmeans_labels time DE21 Hops_S21 Hops_S12
0 0 37.146128 4.502345 0.000000 0.000000
1 1 20.710106 1.548206 0.003191 0.001418
2 2 42.723562 1.339882 0.003711 0.000000
[42]:
sns.displot(data=df_cluster, x="DE21", hue="kmeans_labels", palette="Set1")
plt.xlabel(r"S$_0$-S$_1$ energy gap (eV)")
plt.show()
_images/ulamdyn_walking-through_70_0.png

Once the cluster labels have been determined, we can use the Isomap low-dimensional representation to visualize how the data points are distributed in clusters. This is helpful to check the effectiveness of the clustering algorithm in identifying groups of similar data points.

[43]:
dimred = umd.DimensionReduction(data=df_dzmt, dt=0.5, scaler='standard')
df_isomap = dimred.isomap(n_components=2, metric='euclidean')
df_isomap = pd.merge(df_isomap, df_kmeans, left_index=True, right_index=True)

Scaling data with standard method

***********************************
*  Starting the Isomap analysis:  *
***********************************

 The following set of parameters will be used:

            n_neighbors = 30
                 radius = None
           n_components = 2
           eigen_solver = auto
                    tol = 0
               max_iter = None
            path_method = auto
    neighbors_algorithm = auto
                 n_jobs = -1
                 metric = euclidean
                      p = 2
          metric_params = None

[44]:
sns.scatterplot(data=df_isomap, x='X1', y='X2', hue='kmeans_labels', alpha=0.8)
plt.xlabel('X1')
plt.ylabel('X2')
plt.title('Isomap @ Delta Z-Matrix', fontsize=15)
plt.show()
_images/ulamdyn_walking-through_73_0.png
[45]:
zmat = umd.ZMatrix(geoms_loader)
df_zmt = zmat.build_descriptor()
df_zmt = pd.merge(df_zmt, df_kmeans, left_index=True, right_index=True)
df_zmt.head()
[45]:
TRAJ time r21 r32 r43 r54 r65 r71 r82 r93 ... d4321 d5432 d6543 d7123 d8213 d9321 d10432 d11654 d12654 kmeans_labels
0 1 0.0 1.447360 1.529240 1.365330 1.524298 1.338307 0.995543 1.019582 1.051487 ... -3.223870 9.300478 172.316382 171.230514 -173.922934 -159.814224 161.757855 -173.820349 -9.632035 0
5 1 0.5 1.444278 1.524166 1.373076 1.518747 1.344414 1.036955 1.037297 1.044822 ... -3.311373 9.160352 171.932151 171.209759 -174.687412 -159.289842 160.991317 -173.240792 -8.931099 0
10 1 1.0 1.441208 1.516387 1.382832 1.510701 1.354165 1.083254 1.059178 1.041370 ... -3.366445 8.966530 171.570774 171.218018 -175.432781 -158.825301 160.398034 -172.673497 -8.168832 0
15 1 1.5 1.438597 1.506085 1.394343 1.500289 1.367334 1.129308 1.082647 1.041649 ... -3.390897 8.722355 171.230920 171.252786 -176.144431 -158.428343 159.985230 -172.103087 -7.361343 0
20 1 2.0 1.436835 1.493481 1.407330 1.487681 1.383574 1.171135 1.105279 1.045731 ... -3.386561 8.431232 170.910728 171.311978 -176.812617 -158.107017 159.757299 -171.516341 -6.525217 1

5 rows × 33 columns

[46]:
sns.displot(data=df_zmt, x="r65", hue="kmeans_labels", palette="Set1")
plt.xlabel(r"C5-C6 bond distance ($\AA$)")
plt.show()
_images/ulamdyn_walking-through_75_0.png
[47]:
cluster_labels = list(df_zmt['kmeans_labels'].unique())

colors = ['blue', 'gold', 'red']
idx_hops = df_cluster[(df_cluster['Hops_S21'] == 1) | (df_cluster['Hops_S12'] == 1)].index.tolist()

for l,c in zip(cluster_labels, colors):
    zmt = df_zmt[df_zmt['kmeans_labels'] == l].abs()
    plt.scatter(zmt['r65'], zmt['d12654'], s=8, c=c, alpha=0.4,
                label='cluster ' + str(l))
    df_zmt_hops = df_zmt.abs().loc[idx_hops]
    zmt = df_zmt_hops[df_zmt_hops['kmeans_labels'] == l]
    if zmt.shape[0] != 0:
        plt.scatter(zmt['r65'], zmt['d12654'], s=150, alpha=0.8, marker='*',
                    edgecolors='k', c=c)

plt.ylabel('H$_11$-C$_6$-C$_5$-C$_4$ angle ($^\circ$)', labelpad=10)
plt.xlabel('C$_5$-C$_6$ bond length ($\AA$)', labelpad=10)
plt.legend(**legend_settings)
plt.show()
_images/ulamdyn_walking-through_76_0.png
[48]:
traj, time = df_cluster.query("kmeans_labels == 1").sample(1)[['TRAJ', 'time']].values.flatten()
print(f"  Geometry for TRAJ{int(traj)} | time = {time} fs")
s = {'stick': {'radius': .15}, 'sphere': {'scale': 0.20}}
view_molecule(geoms_loader[traj, time], s)
  Geometry for TRAJ14 | time = 52.5 fs

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

[48]:
<py3Dmol.view at 0x7fa37bf6ff70>

Smooth Overlap of Atomic Positions (SOAP)

To describe the local atomic environments , we have created the Smooth Overlap of Atomic Positions (SOAP) descriptors. The SOAP descriptors is generated using a radial cutoff distance (\(r_{cut}\)) of 14 Å, which defines the spatial extent within which atomic environments are considered. The angular component is expanded using spherical harmonics up to a maximum angular momentum quantum number (\(l_{max}\)) of 6. The radial part of the atomic densities is expanded using a polynomial basis with a maximum radial quantum number (\(n_{max}\)) of 8. To obtain the final SOAP descriptor, we have computed the average SOAP representation for each atomic environment by averaging the overlap of atomic densities across the system, using the outer product of the spherical harmonics and the polynomial basis functions. The total length of the feature vector is 952.

[ ]:
atom_dist = umd.SOAPDescriptor(geoms_loader, r_cut=14, l_max=6, n_max=8,
                               average='outer', rbf='polynomial',
                               atoms=geoms_loader.labels)
df_soap = atom_dist.create_features()
df_soap.head()
TRAJ time 0 1 2 3 4 5 6 7 ... 942 943 944 945 946 947 948 949 950 951
0 1 0.0 0.002793 -0.010802 0.018978 -0.013030 -0.025305 0.061499 0.098811 0.306872 ... 0.046198 -0.066262 -0.132263 -0.064191 0.396419 0.483721 0.197328 0.672379 0.291917 0.130280
1 1 0.1 0.002779 -0.010755 0.018913 -0.012997 -0.025230 0.061327 0.098435 0.304577 ... 0.046212 -0.066083 -0.132067 -0.064109 0.397873 0.485025 0.197780 0.673476 0.292275 0.130390
2 1 0.2 0.002764 -0.010705 0.018845 -0.012968 -0.025141 0.061152 0.098045 0.302281 ... 0.046232 -0.065904 -0.131873 -0.064028 0.399336 0.486341 0.198236 0.674589 0.292639 0.130502
3 1 0.3 0.002749 -0.010653 0.018775 -0.012945 -0.025038 0.060975 0.097643 0.299991 ... 0.046255 -0.065724 -0.131681 -0.063949 0.400806 0.487663 0.198697 0.675711 0.293010 0.130620
4 1 0.4 0.002732 -0.010599 0.018703 -0.012925 -0.024923 0.060796 0.097230 0.297713 ... 0.046283 -0.065544 -0.131492 -0.063870 0.402274 0.488990 0.199155 0.676847 0.293381 0.130735

5 rows × 954 columns